Spelling suggestions: "subject:"atmosphere (geophysics)"" "subject:"atmosphere (rheophysics)""
1 |
A 33GHz and 95GHz cloud profiling radar system (CPRS): Preliminary estimates of particle size in precipitation and cloudsSekelsky, Stephen Michael 01 January 1995 (has links)
The Microwave Remote Sensing Laboratory (MIRSL) st the University of Massachusetts has developed a unique single antenna, dual-frequency polarimetric Cloud Profiling Radar System (CPRS). This project was funded by the Department of Energy's Atmospheric Radiation Measurement (ARM) program, and was intended to help fill the void of ground-based remote sensors capable of characterizing cloud microphysical properties. CPRS is unique in that it can simultaneously measure the complex power backscattered from clouds at 33 GHz and 95 GHz through the same aperture. Both the 33 GHz and 95 GHz channels can transmit pulse-to-pulse selectable vertical or horizontal polarization, and simultaneously record both the copolarized and crosspolarized backscatter. CPRS Doppler, polarimetric and dual-wavelength reflectivity measurements combined with in situ cloud measurements should lead to the development of empirical models that can more accurately classify cloud-particle phase and habit, and make better quantitative estimates of particle size distribution parameters. This dissertation describes the CPRS hardware, and presents colocated 33 GHz and 95 GHz measurements that illustrate the use of dual-frequency measurements to estimate particle size when Mie scattering, is observed in backscatter from rain and ice-phase clouds. Polarimetric measurements are presented as a means of discriminating cloud phase (ice-water) and estimating crystal shape in cirrus clouds. Polarimetric and dual-wavelength observations of insects are also presented with a brief discussion of their impact on the interpretation of precipitation and liquid cloud measurements. In precipitation, Diermendjian's equations for Mie backscatter (1) and the Marshal-Palmer drop-size distribution are used to develop models relating differences in the reflectivity and mean velocity at 33 GHz and 95 GHz to the microphysical parameters of rain. These models are then used to estimate mean droplet size from CPRS measurements of drizzle, which were collected in July, 1993 during the system's first field test in Lincoln, NE. The dissertation also presents cirrus cloud and other measurements collected during the DOE-sponsored Remote Cloud Sensing Intensive Operations Period (RCS-IOP) experiment in April, 1994. Zenith-pointing cirrus measurements show small differences in 33 GHz and 95 GHz reflectivity, as models have predicted (2). Depolarization was also detected in a few cases when ice crystals precipitated from the base of a cloud. On May 29, 1994 CPRS observed a convective storm that produced a cirrus anvil cloud and hail. These storms are one 'engine' producing cirrus clouds and are currently a topic of intensive research by climatologists. Both zenith-pointing and range-height data formats are presented. Measurements of depolarization above the melting/layer are compared to in situ observations of particle size and shape. The RCS-IOP experiment also provided a first opportunity to verify our calibration with aircraft in situ measurements, and to compare our cloud measurements to those collected by other remote sensors. (Abstract shortened by UMI.)
|
2 |
Time Splitting Methods Applied To A Nonlinear Advective EquationShrivathsa, B 07 1900 (has links)
Time splitting is a numerical procedure used in solution of partial differential equations whose solutions allow multiple time scales. Numerical schemes are split for handling the stiffness in equations, i.e. when there are multiple time scales with a few time scales being smaller than the others. When there are
such terms with smaller time scales, due to the Courant number restriction, the computational cost becomes high if these terms are treated explicitly.
In the present work a nonlinear advective equation is solved numerically using different techniques based on a generalised framework for splitting methods.
The nonlinear advective equation was chosen because it has an analytical solution making comparisons with numerical schemes amenable and also because its nonlinearity mimics the equations encountered in atmospheric
modelling. Using the nonlinear advective equation as a test bed, an analysis of the splitting methods and their influence on the split solutions has been made.
An understanding of influence of splitting schemes requires knowledge of behaviour of unsplit schemes beforehand. Hence a study on unsplit methods has also been made.
In the present work, using the nonlinear advective equation, it shown that the three time level schemes have high phase errors and underestimate energy (even though they have a higher order of accuracy in time). It is also found that the leap-frog method, which is used widely in atmospheric modelling, is the worst among examined unsplit methods. The semi implicit method, again a popular splitting method with atmospheric modellers is the worst among examined split methods.
Three time-level schemes also need explicit filtering to remove the computational mode. This filtering can have a significant impact on the obtained numerical solutions, and hence three-time level schemes appear to be
unattractive in the context of the nonlinear convective equation. Based on this experience, splitting methods for the two-time level schemes is proposed. These schemes realistically capture the phase and energy of the nonlinear advective equation.
|
Page generated in 0.0548 seconds