• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 11
  • 9
  • 7
  • 4
  • 3
  • 1
  • 1
  • 1
  • Tagged with
  • 40
  • 40
  • 8
  • 8
  • 8
  • 8
  • 8
  • 7
  • 6
  • 5
  • 5
  • 5
  • 5
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Utilização dos produtos obtidos por sensoriamento remoto na caracterização da qualidade do ar na Região Metropolitana de São Paulo / Use of remote sensing derived products in the air quality characterization over the Metropolitan Area of São Paulo.

Natali, Luciene 28 July 2008 (has links)
O objetivo desse trabalho foi estudar a relação entre profundidade óptica de aerossóis (AOD), obtida por sensoriamento remoto, e a concentração de material particulado (MP10 e MP2,5) medida próximo à superfície sobre a Região Metropolitana de São Paulo (RMSP). A profundidade óptica foi derivada a partir de medidas de radiâncias fornecidas pelos sensores MODIS. Estes sensores estão posicionados a bordo dos satélites EOS-TERRA e EOS-AQUA, operados pela NASA. As concentrações de MP10 e MP2,5 foram obtidas nas estações da rede operacional da CETESB. Foram feitos alguns estudos de caso considerando diferentes situações atmosféricas, aos quais se aplicou a metodologia proposta por Castanho (2005) que busca reduzir as incertezas na determinação da profundidade óptica derivada do MODIS e identificar qual o modelo de aerossol é mais adequado para aplicação em estudos de qualidade do ar. Os valores de AOD calculados para as diferentes situações foram comparados com aqueles obtidos pela AERONET e com as concentrações anteriormente citadas, buscando uma validação dos mesmos. Valores médios de AOD foram calculados para áreas de 10 km x 10 km ao redor das estações de monitoramento do MP. Testes foram realizados para verificar os efeitos de sazonalidade, da quantidade de água na coluna atmosférica, da resposta da AOD por faixas de concentração de MP10, da geometria do sensor, da presença de nuvens e da presença de aerossol acima da Camada de Mistura (CM). Os resultados foram apresentados por estações com o objetivo de se visualizar diferentes condições sobre a região estudada. Alguns dos fatores relevantes observados durante a comparação entre a concentração de MP10 e a AOD foram: a influência do período do ano e da quantidade de água na coluna atmosférica. A geometria do sensor foi fator determinante para melhora das correlações, quando limitado o ângulo de espalhamento em 140°. Situações em que há ausência de nuvens, identificadas através de imagens do MODIS no visível, também apresentaram melhores resultados. Outro fator de extrema importância foi a estrutura vertical da CM. Através de medidas obtidas de um LIDAR foi verificado que a presença de aerossóis acima da CM, a qual é determinada principalmente pelas condições atmosféricas, é determinante para as correlações entre AOD e o MP. / The main purpose of this work was to study the relationship between the Aerosol Optical Depth (AOD), obtained by remote sensing, and the particulate material concentration (PM10 and PM2.5), near to the surface over the Metropolitan Area of Sao Paulo (MASP). The Aerosol Optical Depth was retrieved based on reflectance measurements provided by MODIS sensors. These sensors are carried aboard EOS-TERRA and EOS-AQUA satellites, which are operated by NASA. The PM10 and PM2.5 concentrations were obtained in the CETESB operational network. Case studies were performed, considering several atmospheric conditions, applying the methodology proposed by CASTANHO (2005), designed both to reduce the uncertainty in the determination of the MODIS derived Optical Depth and to identify which aerosol model is more appropriated for air quality studies. Some derived results were compared with AERONET data and with the previously mentioned concentrations as a cross-check test. Mean AOD values were calculated using 10 km x 10 km area ground around PM monitoring stations. Tests were performed to estimate the effects of seasonality, atmospheric column water content, AOD response to PM10 concentration, sensor geometry, clouds and aerosol concentration above the Mixing Layer (ML). To stress the different conditions of the studied region, the results were presented considering each station. Some of the relevant observed factors in the PM10 concentration and AOD comparison were the year period influence and the atmospheric column water content. The sensor geometry was an important factor to the improvement of the obtained correlations when the scattering angle was bounded to 140°. Cloudless situations, identified by MODIS true color images, also improved the results. Another important factor was the Mixing Layer vertical structure. Using LIDAR measurements it was verified that the presence of aerosols above the ML, which is determined mainly by atmospheric conditions, is crucial for the correlations between AOD and PM.
12

Optical and physicochemical properties of secondary organic aerosol and aerosol generated from humic substances

Kwon, Deokhyeon 01 August 2018 (has links)
A great deal of attention has been paid to brown carbon aerosol in the troposphere because it can both scatter and absorb solar radiation, thus affecting the Earth’s climate. However, knowledge of the optical and chemical properties of brown carbon aerosol is still limited. In this thesis, we have investigated different aspects of the optical and physicochemical properties of various brown carbon aerosol samples of potential atmospheric importance. First, reactions involving the di-carbonyl species methylglyoxal (MG) have been previously suggested as an important pathway for the production of secondary organic aerosol (SOA) in the atmosphere. Reaction in an aqueous inorganic salt solution, such as ammonium sulfate (AS), leads to the formation of light-absorbing brown carbon (BrC) product. In this thesis work, we employed a variety of experimental approaches to investigate the optical and physicochemical properties of BrC aerosol generated from this AS-MG reaction (BrC (AS/MG)). Optical properties of the dried BrC (AS/MG) aerosol particles were studied by Fourier transform infrared (FTIR) extinction spectroscopy in the mid-infrared region, cavity ring-down spectroscopy (CRDS) at 403 nm in the visible, and by measuring the light scattering phase function and polarization profiles at two different visible wavelengths, 532 and 402 nm. In addition, we used UV−vis spectroscopy to measure the mass absorption coefficient (MAC) of the solution-phase reaction products. The different optical properties were measured as a function of reaction time for a period of up to 22 days. The UV-vis absorption spectra showed a clear increase in measured MAC in the visible and near UV as the solution aged. However, analysis of the light scattering data showed no significant differences between AS and BrC aerosol in the derived refractive indices at either 532 or 402 nm, even for the longest reaction times. The FTIR extinction spectra was modeled in a Mie theory simulation to derive the complex refractive index in the mid-IR range (7000-800 cm−1); the results showed no significant changes in either the real or the imaginary parts of the refractive indices for BrC (AS/MG) aerosol particles when compared to unreacted AS aerosol. From the CRDS extinction data, the optical constants for BrC (AS/MG) particles at 403 nm were also determined through a Mie theory based analysis. The retrieved real index of refraction at 403 nm is n = 1.551 ± 0.005, with an imaginary index value of k = 0.000 ± 0.002; these values do not appear to change significantly with aging time over the course of 22 days and are not markedly different from the AS aerosol values. The small imaginary index value suggests that BrC (AS/MG) aerosol formed from this pathway may not significantly contribute to warming. In addition, CRDS measurements of the BrC (AS/MG) aerosol extinction at 403 nm as a function of particle size show a significant deviation from Mie theory simulations for particles with diameters of ≳500 nm, probably as a result of non-spherical particle shape effects. We also employed atomic force microscopy (AFM)-based IR spectroscopy to investigate the morphology and chemical composition of single SOA particles. AFM analysis of the particle morphology shows that a significant fraction of BrC (AS/MG) particles with diameters of ≳500 nm are non-spherical in shape, consistent with our observed breakdown in the applicability of Mie theory for larger particles. In addition to these measurements, we have characterized additional physicochemical properties of the BrC (AS/MG) aerosol particles including hygroscopic growth using a tandem-differential mobility analyzer. Compared to AS, BrC aerosol particles are found to have lower deliquescence relative humidity (DRH), efflorescence relative humidity (ERH), and hygroscopic growth at the same relative humidity values. Second, we investigated the optical properties of the water soluble products of limonene BrC generated from ozonolysis of d-limonene with further aging by AS. Optical constants for the dried limonene BrC aerosol product were measured at 403 nm by CRDS over the course of 9 days of aging. While the fresh limonene BrC aerosol showed a significant non-zero absorption index, the aged samples showed absorption index values consistent with zero. This result was somewhat unexpected because UV-vis absorption spectra of the bulk reaction solution showed a continued increase in absorption as the solution aged. One possible explanation for this result is that there could be an increase in the fraction of volatile chromophores as the solution ages, that are then removed in the aerosol drying process. Third, we investigated optical properties and chemical compositions of several humic substance (HS) reference samples including humic acid (HA) and fulvic acid (FA) standards by CRDS, UV-vis spectroscopy, elemental analysis, and 13C NMR spectroscopy. Measurements of the optical properties of HS is important in atmospheric science, because it is thought that HS samples have similar optical properties to organic materials, such as HUmic-Like Substances (HULIS), that exist in clouds, fogs, rainwater, and atmospheric aerosol. The humic acid aerosol samples generally showed higher absorption index values than the fulvic acid aerosol samples. We also found a correlation between the absorption index and chemical composition, with the value for k generally increasing with both increasing carbon-to-oxygen atomic ratio and sample aromaticity. In addition, we compared our measured optical constants for the HS aerosol samples with results from previous studies of field collected HULIS. The absorption index values for the fulvic acid aerosol samples give a better match than the humic acid samples when compared to the results from the field collected samples. Overall, these studies provide new details of the optical and physicochemical properties of a class of brown carbon organic aerosol which may have important implications for atmospheric chemistry and climate.
13

Chemical, physical and mechanical properties of nanomaterials and its applications

Ghorai, Suman 01 May 2013 (has links)
The contribution of atmospheric aerosols towards radiative forcing has a very high uncertainty due to their short atmospheric lifetime. The aerosol effects are largely controlled by the density, elemental composition, and hygroscopic properties of the aerosol particles. Therefore, we have performed designed new methodology using Scanning Transmission X-ray Microscopy (STXM), Atomic force spectroscopy (AFM), micro-FTIR spectroscopy and Scanning Electron Microscopy (SEM) to quantify these important aerosol properties. Hygroscopic properties are quantified by plotting the mass of water on a single particle basis, calculated from STXM, as a function of relative humidity. Alternatively, micro-FTIR spectra have been used to study the effect of composition of aerosol particles on the hygroscopic properties of NaCl. Moreover, a unique combination of STXM and AFM has been utilized to quantify density and elemental composition of micrometer dimensional particles. This method has also been extended towards exploring mixing state of particles, consisting of heterogeneously mixed inorganic and organic compounds. In addition to these above mentioned properties, the fate of an atmospheric particle is often altered by chemical transformation and that in turn is influenced by the atmospheric RH. Therefore, we have studied an unusual keto-enol tautomerism in malonic acid particles at high RH, which is not observed in bulk. This observation could potentially be utilized to significantly improve the models to estimate Secondary Organic Aerosols (SOA). Using STXM and micro-FTIR technique, RH dependent equilibrium constant of the tautomerism reaction has been quantified as well. Organic nanocrystals capable of undergoing solid state photochemical changes in a single-crystal-to-single-crystal (SCSC) manner have been particularly important in fabricating molecular switches, data storage devices etc. Mechanical properties of these nanomaterials may control its SCSC reactivity. In addition, investigation of mechanical stiffness is important to define allowable limit of stiffness towards device application. Therefore, we studied mechanical properties of series organic nano cocrystals primarily consisting of trans-1,2-bis(4-pyridyl)ethylene and substituted resorcinol using AFM nanoindentation technique. Dependence of mechanical properties and SCSC reactivity on the resorcinol structure is also investigated as well. Moreover, photolithography on the thin film of these organic cocrystals has been performed to demonstrate its applicability as a photoresist.
14

Messverfahren zur Bestimmung der Partikelanzahlkonzentration in Umweltaerosolen

Hillemann, Lars 25 September 2013 (has links) (PDF)
Die natürliche Umgebungsluft enthält Aerosolpartikel, deren Größe von wenigen Nanometern bis zu einigen Mikrometern reicht. Insbesondere anthropogenen ultrafeinen Partikeln, die kleiner als 100 nm sind, werden negative Wirkungen auf die menschliche Gesundheit zugeschrieben. Die gravimetrische Messung der Partikelmassekonzentration erfasst ultrafeine Partikel nur ungenügend, da die Masse dieser Partikel sehr gering ist. Deutlich empfindlicher gelingt die Quantifizierung ultrafeiner Partikel durch die Messung der Partikelanzahlkonzentration. Die Arbeit beschreibt ein Verfahren zur Messung der Anzahlkonzentration von Partikeln in Umweltaerosolen. Es verknüpft die elektrische Aufladung der Partikel mit deren Klassierung im elektrischen Feld und ihre Mengenbestimmung anhand der elektrischen Ladung. Mittels des entwickelten Sensormodells gelingt die Verbindung der gemessenen Rohdaten mit der Anzahlgrößenverteilung der Partikel durch eine Kernfunktion in einer Fredholmschen Integralgleichung erster Art. Zur Dateninversion wird diese Gleichung in diskreter Form als lineares Gleichungssystem genutzt. Dessen Koeffizienten bilden die Kernmatrix, welche mit einer neu entwickelten Methode experimentell bestimmt wird. Vergleichsmessungen zeigen eine gute Übereinstimmung des Verfahrens mit Referenzverfahren der Aerosolmesstechnik und unterstreichen die Eignung des Verfahrens zur Partikelquantifizierung in Umweltmessnetzen.
15

Rétrodiffusion (UV, VIS) résolue en polarisation de particules d’origine désertique : expériences de laboratoire et en atmosphère réelle par lidar / Polarization resolved Backscattering (UV, VIS) of mineral dust particles : laboratory experiments and atmospheric observations by lidar

Mehri, Tahar 21 September 2018 (has links)
Ces travaux de thèse, réalisés à l’Institut Lumière Matière, traitent de la rétrodiffusion optique des particules de l’atmosphère d’origine désertique, dont l’impact sur le bilan radiatif terrestre reste à quantifier, en raison de leur grande diversité de taille, de forme et de composition chimique. La thèse repose essentiellement sur un polarimètre de laboratoire (UV, VIS) adressant la géométrie de rétrodiffusion avec précision (180.0 +/- 0.2°). Le rapport des éléments de la matrice de rétrodiffusion a ainsi été évalué avec précision (< 1 %) et la réponse spectrale (UV, VIS) de ce rapport a ainsi pu être étudiée, ce qui a permis de discuter de l’applicabilité du modèle mathématique des sphéroïdes, décrit par le code T-matrix, pour décrire la rétrodiffusion optique de ces particules dans la géométrie d’exacte rétrodiffusion, comme publié dans JQSRT en 2016. Puis, l’utilisation de ce Pi-Polarimètre dans la troposphère libre de Lyon par lidar a permis d’évaluer la concentration en masse des particules désertiques. Cette évaluation a été réalisée pour différents modèles de forme (sphéroïdes, particules de surface lisse, rugueuse) obtenus par simulation numérique en coopération avec l’équipe de T. Nousiainen (Finlande). Un résultat majeur est que la concentration en masse peut différer de 30 % selon le modèle de forme choisi, comme publié dans Atmospheric Research en 2018. Enfin, la sensibilité et la précision du Pi-Polarimètre (UV, VIS) ont été utilisées pour révéler les principales caractéristiques du processus photo-catalytique de nucléation en présence de particules désertiques via des observations systématiques de ce processus, réalisées sur une durée de deux années / These thesis studies, carried out at the Institute of Light and Matter (ILM), deal with the optical backscattering of atmospheric particles of desert origin, whose impact on the terrestrial radiative budget remains to be quantified, due to their great diversity of size, shape and chemical composition. The thesis is essentially based on a laboratory polarimeter (UV, VIS) addressing the backscattering geometry with accuracy (180.0 +/- 0.2 °). The report of the backscattering matrix elements was thus accurately evaluated (<1%) and the spectral response (UV, VIS) of this report was thus studied, which made it possible to discuss the applicability of the spheroidal mathematical model, described by the T-matrix numerical code, to describe the optical backscattering of these particles in the exact backscattering geometry, as published in JQSRT in 2016. Then, the use of this Pi-Polarimeter in the troposphere free of Lyon by lidar made it possible to evaluate the mass concentration of desert dust particles. This evaluation was carried out for different shape models (spheroids, smooth particles, rough particles) obtained by numerical simulation in cooperation with T. Nousiainen’s group (Finland). A major result is that the mass concentration may differ by 30 % depending on the chosen dust shape model, as published in Atmospheric Research in 2018. Finally, the sensitivity and accuracy of the Pi-Polarimeter (UV, VIS) have been used to reveal the main characteristics of the photo-catalytic process of nucleation in the presence of desert dust particles via systematic observations of this process, carried out over a two years period
16

Utilização dos produtos obtidos por sensoriamento remoto na caracterização da qualidade do ar na Região Metropolitana de São Paulo / Use of remote sensing derived products in the air quality characterization over the Metropolitan Area of São Paulo.

Luciene Natali 28 July 2008 (has links)
O objetivo desse trabalho foi estudar a relação entre profundidade óptica de aerossóis (AOD), obtida por sensoriamento remoto, e a concentração de material particulado (MP10 e MP2,5) medida próximo à superfície sobre a Região Metropolitana de São Paulo (RMSP). A profundidade óptica foi derivada a partir de medidas de radiâncias fornecidas pelos sensores MODIS. Estes sensores estão posicionados a bordo dos satélites EOS-TERRA e EOS-AQUA, operados pela NASA. As concentrações de MP10 e MP2,5 foram obtidas nas estações da rede operacional da CETESB. Foram feitos alguns estudos de caso considerando diferentes situações atmosféricas, aos quais se aplicou a metodologia proposta por Castanho (2005) que busca reduzir as incertezas na determinação da profundidade óptica derivada do MODIS e identificar qual o modelo de aerossol é mais adequado para aplicação em estudos de qualidade do ar. Os valores de AOD calculados para as diferentes situações foram comparados com aqueles obtidos pela AERONET e com as concentrações anteriormente citadas, buscando uma validação dos mesmos. Valores médios de AOD foram calculados para áreas de 10 km x 10 km ao redor das estações de monitoramento do MP. Testes foram realizados para verificar os efeitos de sazonalidade, da quantidade de água na coluna atmosférica, da resposta da AOD por faixas de concentração de MP10, da geometria do sensor, da presença de nuvens e da presença de aerossol acima da Camada de Mistura (CM). Os resultados foram apresentados por estações com o objetivo de se visualizar diferentes condições sobre a região estudada. Alguns dos fatores relevantes observados durante a comparação entre a concentração de MP10 e a AOD foram: a influência do período do ano e da quantidade de água na coluna atmosférica. A geometria do sensor foi fator determinante para melhora das correlações, quando limitado o ângulo de espalhamento em 140°. Situações em que há ausência de nuvens, identificadas através de imagens do MODIS no visível, também apresentaram melhores resultados. Outro fator de extrema importância foi a estrutura vertical da CM. Através de medidas obtidas de um LIDAR foi verificado que a presença de aerossóis acima da CM, a qual é determinada principalmente pelas condições atmosféricas, é determinante para as correlações entre AOD e o MP. / The main purpose of this work was to study the relationship between the Aerosol Optical Depth (AOD), obtained by remote sensing, and the particulate material concentration (PM10 and PM2.5), near to the surface over the Metropolitan Area of Sao Paulo (MASP). The Aerosol Optical Depth was retrieved based on reflectance measurements provided by MODIS sensors. These sensors are carried aboard EOS-TERRA and EOS-AQUA satellites, which are operated by NASA. The PM10 and PM2.5 concentrations were obtained in the CETESB operational network. Case studies were performed, considering several atmospheric conditions, applying the methodology proposed by CASTANHO (2005), designed both to reduce the uncertainty in the determination of the MODIS derived Optical Depth and to identify which aerosol model is more appropriated for air quality studies. Some derived results were compared with AERONET data and with the previously mentioned concentrations as a cross-check test. Mean AOD values were calculated using 10 km x 10 km area ground around PM monitoring stations. Tests were performed to estimate the effects of seasonality, atmospheric column water content, AOD response to PM10 concentration, sensor geometry, clouds and aerosol concentration above the Mixing Layer (ML). To stress the different conditions of the studied region, the results were presented considering each station. Some of the relevant observed factors in the PM10 concentration and AOD comparison were the year period influence and the atmospheric column water content. The sensor geometry was an important factor to the improvement of the obtained correlations when the scattering angle was bounded to 140°. Cloudless situations, identified by MODIS true color images, also improved the results. Another important factor was the Mixing Layer vertical structure. Using LIDAR measurements it was verified that the presence of aerosols above the ML, which is determined mainly by atmospheric conditions, is crucial for the correlations between AOD and PM.
17

Characterization of Air Pollutant and Greenhouse Gas Emissions from Energy Use and Energy Production Processes in United States

Li, Xiang 01 September 2017 (has links)
Air pollutants and greenhouse gases are two groups of important trace components in the earth’s atmosphere that can affect local air quality, be detrimental to the human health and ecosystem, and cause climate change. Human activities, especially the energy use and energy production processes, are responsible for a significant share of air pollutants and greenhouse gases in the atmosphere. In this work, I specifically focused on characterizing air pollutants and greenhouse gas emissions from the on-road gasoline and diesel vehicles, which is an important energy use process that largely contributes to the urban air pollutions, and from the natural gas production systems, which is a major energy production process that has increased dramatically in recent years and is expected to have a long-lasting impact in the future. We conducted multi-seasonal measurements in the Fort Pitt Tunnel in Pittsburgh, PA to update the on-road vehicle emission factors, to measure the size distribution of vehicle emitted particulate matter (PM), and to quantify the volatility distributions of the vehicle emitter primary organic aerosol (POA). We also conducted mobile measurements in the Denver-Julesburg Basin, the Uintah Basin, and the Marcellus Shale to quantify facility-level VOC emission from natural gas production facilities, and I constructed a gridded (0.1° × 0.1°) methane emission inventory of natural gas production and distribution over the contiguous US. I found that the stricter emission standards were effective on regulating NOx and PM emissions of diesel vehicles and the NOx, CO and organic carbon (OC) emissions of gasoline vehicles, while the elemental carbon (EC) emissions of gasoline vehicles did not change too much over the past three decades. Vehicle-emitted particles may be largely externally mixed, and a large fraction of vehicle-emitted particles may be purely composed of volatile component. Vehicle-emitted smaller particles (10– 60 nm) are dominantly (over 75%) composed of volatile component. The size-resolved particles and particles emission factors for both gasoline and diesel vehicles are also reported in this work. I also found that the POA volatility distribution measured in the dynamometer studies can be applied to describe gas-particle partitioning of ambient POA emissions. The POA volatility distribution measured in the tunnel does not have significant diurnal or seasonal variations, which indicate that a single volatility distribution is adequate to describe the gas-particle partitioning of vehicle emitted POA in the urban environment. The facility-level VOC emission rates measured at gas production facilities in all three gas production fields are highly variable and cross a range of ~2-3 order of magnitudes. It suggests that a single VOC emission profile may not be able to characterize VOC emissions from all natural gas production facilities. My gridded methane emission inventory over the contiguous US show higher methane emissions over major natural gas production fields compared with the Environmental Protection Agency Inventory of US Greenhouse Gas Emission and Sinks (EPA GHGI) and the Emission Database for Global Atmospheric Research, version 4.2 (Edgar v4.2). The total methane emissions of the natural gas production and distribution sector estimated by my inventory are 74% and 20% higher than the Edgar v4.2 and EPA GHGI, respectively. I also run the GEOS-Chem methane simulation with my inventory and EPA GHGI and compare with the GOSAT satellite data, and results show that my inventory can improve the model and satellite comparison, but the improvement is very limited. The size-resolved emission factors of vehicle emitted particles and POA volatility distribution reported in this work can be applied by the chemical transport models to better quantify the contribution of vehicle emissions to the PM in the atmosphere. Since our measurement of VOC emissions of natural gas production facilities were conducted before EPA started to regulate VOC emissions from the O&NG production facilities in 2016, the facility-level VOC emission rates reported in this work can serve as the basis for future studies to test the effectiveness of the regulatory policies. The spatially resolved methane emission inventory of natural gas production and distribution constructed in this work can be applied to update the current default methane emission inventory of GEOS-Chem, and the updated methane emission inventory can be used as a better a priori emission field for top-down studies that inversely estimate methane emissions from atmospheric methane observation.
18

Měření rozptylu světla na atmosférickém aerosolu / Aerosol light scattering measurements

Novotná, Nikola January 2017 (has links)
This master thesis analyses light scattering on atmospheric aerosols, which has been measured at Košetice observatory in Pelhřimov region since 2012. In the thesis, data are processed for period from 1. 1. 2014 to 31. 12. 2015 which provide representative values of scattering and backscattering light measurement. Angstroem exponent was calculated based on which data corrections were performed. Data were processed using hour steps and compared with meteorological and emissions concentrations data. Correlations were calculated and regressions models estimated in order to verify correctness of measurement and to explore impact of meteorological conditions and emissions concentrations PM2,5 and PM10 on scattering coefficients. Performed analyses imply, that light scattering is higher for higher concentrations of PM2,5 and PM10 and for higher relative air humidity and lower for higher outdoor temperature, total precipitations, and wind speed. In addition, it was showed that light scattering is influenced by wind direction, which determines compositions of aerosols in the sample. Key words: atmospheric aerosol, light scattering, time series evaluation
19

Studium velikostně rozlišeného atmosférického aerosolu pomocí kaskádních impaktorů / Study of size-resolved atmospheric aerosol using cascade impactors

Kozáková, Jana January 2018 (has links)
This dissertation includes two main research projects: 1) the investigation of the intermodal fraction and 2) the influence of regional air pollution transport on Ostrava. Introduction and aim of the first project. Fine and coarse particulate matter (PM) of atmospheric aerosol are considered as separate pollutants and overlap in the particle size range of about 1 - 2.5 μm (aerodynamic diameter dae; PM1-2.5) which represents the intermodal fraction. Sources of both fine and coarse fractions contribute to PM1-2.5 to different extents due to changing meteorological and spatial conditions. Therefore, there is an ongoing discussion as to whether PM1 should be included for monitoring as an additional fine particulate pollutant by the ambient air quality standard. The intrusion of the one fraction to the other one can lead to some inaccuracies in the source apportionment, epidemiological and exposure studies. The aim of the first project was to examine the associations between PM1-2.5 and the coarse (PM2.5-10 or PM>2.5)/fine (PM1) fraction under different meteorological conditions at various sites in the Czech Republic during winter and summer seasons. Introduction and aim of the second project. The EU air quality standards have been frequently exceeded in one of the European air pollution hot spots:...
20

Messverfahren zur Bestimmung der Partikelanzahlkonzentration in Umweltaerosolen

Hillemann, Lars 02 July 2013 (has links)
Die natürliche Umgebungsluft enthält Aerosolpartikel, deren Größe von wenigen Nanometern bis zu einigen Mikrometern reicht. Insbesondere anthropogenen ultrafeinen Partikeln, die kleiner als 100 nm sind, werden negative Wirkungen auf die menschliche Gesundheit zugeschrieben. Die gravimetrische Messung der Partikelmassekonzentration erfasst ultrafeine Partikel nur ungenügend, da die Masse dieser Partikel sehr gering ist. Deutlich empfindlicher gelingt die Quantifizierung ultrafeiner Partikel durch die Messung der Partikelanzahlkonzentration. Die Arbeit beschreibt ein Verfahren zur Messung der Anzahlkonzentration von Partikeln in Umweltaerosolen. Es verknüpft die elektrische Aufladung der Partikel mit deren Klassierung im elektrischen Feld und ihre Mengenbestimmung anhand der elektrischen Ladung. Mittels des entwickelten Sensormodells gelingt die Verbindung der gemessenen Rohdaten mit der Anzahlgrößenverteilung der Partikel durch eine Kernfunktion in einer Fredholmschen Integralgleichung erster Art. Zur Dateninversion wird diese Gleichung in diskreter Form als lineares Gleichungssystem genutzt. Dessen Koeffizienten bilden die Kernmatrix, welche mit einer neu entwickelten Methode experimentell bestimmt wird. Vergleichsmessungen zeigen eine gute Übereinstimmung des Verfahrens mit Referenzverfahren der Aerosolmesstechnik und unterstreichen die Eignung des Verfahrens zur Partikelquantifizierung in Umweltmessnetzen.

Page generated in 0.058 seconds