Spelling suggestions: "subject:"atmospheric boundary layer (ABL)"" "subject:"tmospheric boundary layer (ABL)""
1 |
CFD investigation of the atmospheric boundary layer under different thermal stability conditionsPieterse, Jacobus Erasmus 03 1900 (has links)
Thesis (MScEng)--Stellenbosch University, 2013. / ENGLISH ABSTRACT: An accurate description of the atmospheric boundary layer (ABL) is a prerequisite
for computational fluid dynamic (CFD) wind studies. This includes taking into
account the thermal stability of the atmosphere, which can be stable, neutral or
unstable, depending on the nature of the surface fluxes of momentum and heat.
The diurnal variation between stable and unstable conditions in the Namib Desert
interdune was measured and quantified using the wind velocity and temperature
profiles that describe the thermally stratified atmosphere, as derived by Monin-
Obukhov similarity theory. The implementation of this thermally stratified
atmosphere into CFD has been examined in this study by using Reynoldsaveraged
Navier-Stokes (RANS) turbulence models. The maintenance of the
temperature, velocity and turbulence profiles along an extensive computational
domain length was required, while simultaneously allowing for full variation in
pressure and density through the ideal gas law. This included the implementation
of zero heat transfer from the surface, through the boundary layer, under neutral
conditions so that the adiabatic lapse rate could be sustained. Buoyancy effects
were included by adding weight to the fluid, leading to the emergence of the
hydrostatic pressure field and the resultant density changes expected in the real
atmosphere. The CFD model was validated against measured data, from literature,
for the flow over a cosine hill in a wind tunnel. The standard k-ε and SST k-ω
turbulence models, modified for gravity effects, represented the data most
accurately. The flow over an idealised transverse dune immersed in the thermally
stratified ABL was also investigated. It was found that the flow recovery was
enhanced and re-attachment occurred earlier in unstable conditions, while flow
recovery and re-attachment took longer in stable conditions. It was also found that
flow acceleration over the crest of the dune was greater under unstable conditions.
The effect of the dune on the flow higher up in the atmosphere was also felt at
much higher distances for unstable conditions, through enhanced vertical
velocities. Under stable conditions, vertical velocities were reduced, and the
influence on the flow higher up in the atmosphere was much less than for unstable
or neutral conditions. This showed that the assumption of neutral conditions could
lead to an incomplete picture of the flow conditions that influence any particular case of interest. / AFRIKAANSE OPSOMMING: 'n Akkurate beskrywing van die atmosferiese grenslaag (ABL) is 'n voorvereiste
vir wind studies met berekenings-vloeimeganika (CFD). Dit sluit in die
inagneming van die termiese stabiliteit van die atmosfeer, wat stabiel, neutraal of
onstabiel kan wees, afhangende van die aard van die oppervlak vloed van
momentum en warmte. Die daaglikse variasie tussen stabiele en onstabiele
toestande in die Namib Woestyn interduin is gemeet en gekwantifiseer deur
gebruik te maak van die wind snelheid en temperatuur profiele wat die termies
gestratifiseerde atmosfeer, soos afgelei deur Monin-Obukhov teorie, beskryf. Die
implementering van hierdie termies gestratifiseerde atmosfeer in CFD is in hierdie
studie aangespreek deur gebruik te maak van RANS turbulensie modelle. Die
handhawing van die temperatuur, snelheid en turbulensie profiele in die lengte
van 'n uitgebreide berekenings domein is nodig, en terselfdertyd moet toegelaat
word vir volledige variasie in die druk en digtheid, deur die ideale gaswet. Dit
sluit in die implementering van zero hitte-oordrag vanaf die grond onder neutrale
toestande sodat die adiabatiese vervaltempo volgehou kan word. Drykrag effekte
is ingesluit deur die toevoeging van gewig na die vloeistof, wat lei tot die
ontwikkeling van die hidrostatiese druk veld, en die gevolglike digtheid
veranderinge, wat in die werklike atmosfeer verwag word. Die CFD-model is
gevalideer teen gemete data, vanaf die literatuur, vir die vloei oor 'n kosinus
heuwel in 'n windtonnel. Die standaard k-ε en SST k-ω turbulensie modelle, met
veranderinge vir swaartekrag effekte, het die data mees akkuraat voorgestel. Die
vloei oor 'n geïdealiseerde transversale duin gedompel in die termies
gestratifiseerde ABL is ook ondersoek. Daar is bevind dat die vloei herstel is
versterk en terug-aanhegging het vroeër plaasgevind in onstabiele toestande,
terwyl vloei herstel en terug-aanhegging langer gevat het in stabiele toestande.
Daar is ook bevind dat vloei versnelling oor die kruin van die duin groter was
onder onstabiele toestande. Die effek van die duin op die vloei hoër op in die
atmosfeer is ook op hoër afstande onder onstabiele toestande gevoel, deur middel
van verhoogte vertikale snelhede. Onder stabiele toestande, is vertikale snelhede
verminder, en die invloed op die vloei hoër op in die atmosfeer was veel minder
as vir onstabiel of neutrale toestande. Dit het getoon dat die aanname van neutrale
toestande kan lei tot 'n onvolledige beeld van die vloei toestande wat 'n invloed op
'n bepaalde geval kan hê.
|
2 |
Crosswind assessment of trains on different ground configurationsVenkatasalam, Nachiyappan January 2013 (has links)
Cross wind analysis is one of the important safety measures for rail vehicle certification. The objective of this study is to identify which vehicle certification ground setup, true flat ground (TFG) or single track ballast and rail (STBR) represents a more realistic ground setup with atmospheric boundary layer (ABL) wind inlet and also to represent an embankment scenario. A streamlined high speed train ICE3 and a conventional Regional train are taken for the analysis to represent both categories. CFD is used as a tool for calculations. The best practice recommended by the AeroTRAIN project is used for the CFD approach. The analysis is done for various configurations including STBR, TFG, embankments, ground roughness, moving ground, non-moving ground, block profile inlet, ABL inlet, model scale and full scale setups. The Regional train shows higher roll moment coefficient about lee rail (Cmx,lee) compared to the ICE3 train, whereas the ICE3 train has a higher lift force coefficient than the Regional train. STBR setup shows a higher force and moment coefficient compared to TFG. The STBR setup represents the more realistic setup of moving rough ground with ABL wind inlet and also the realistic embankment scenario.
|
3 |
Variation Of Marine Boundary Layer Characteristic Over Bay Of Bengal And Arabian SeaRai, Deepika 08 1900 (has links) (PDF)
The atmospheric boundary layer (ABL) is the lowest layer of the atmosphere where surface effects are felt on time scales of about an hour. While its properties are determined by the surface characteristics, season and synoptic conditions, they in turn determine convective cloud properties and are required for the representation of cloud processes in atmospheric models. Further, interaction of the ABL with the surface layer of the ocean is a key component of ocean-atmosphere coupling. ABL characteristics over ocean surrounding the sub-continent become very important for understanding the monsoon processes during the monsoon season because the roots of many monsoon systems, that give rain to India, are over there.
In this thesis data used are from three major field experiments namely the Bay of Bengal Monsoon Experiment (BOBMEX, 1999), Arabian Sea Monsoon Experiment (ARMEX, in two phases, ARMEX-I during 2002 and ARMEX-II in 2003), and Continental Tropical Convergence Zone (CTCZ) experiment (Pilot in 2009) which were carried out under the Indian Climate Research Programme (ICRP). While there have been few studies on ABL characteristics for individual cruises, a comprehensive study considering all available radiosonde data from the above cruises has been missing. This study fills this gap and focuses on the vertical structure of ABL using more than 400 high resolution Vaisala GPS radiosonde data collected over Bay of Bengal and Arabian Sea.
The study attempts at first to look at the ABL characteristics of individual cruises and then compare and contrast them over the Bay of Bengal and Arabian Sea. ABL height Hm, estimated by using virtual potential temperature (θv) profile, shows diurnal variation during weak phase of convection while maximum in early morning during active phase of convection. Different variables i.e. moist static energy (h), specific humidity (q),
convective available potential energy (CAPE), virtual potential temperature (θv) and equivalent potential temperature (θe) also differ during weak and active convection periods. Conserved variables mixing line approach gives the height up to which ground thermals penetrate in the vertical. This height, denoted by MH that represents the actual ABL height, is 2-3 times larger than Hm when shallow convective clouds are present. In general both Hm and MH are 20-30% larger over Arabian Sea compares to that over Bay of Bengal. Comparison of surface convective available potential energy (CAPE) and equivalent potential temperature (θe) between normal and deficit monsoon years shows that convective instability was as large in deficit years. This means that dynamic and not thermodynamics, controlled the occurrence of convection.
|
Page generated in 0.0592 seconds