• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 15
  • Tagged with
  • 15
  • 15
  • 15
  • 15
  • 3
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Spaced-antenna wind estimation using an X-band active phased-array weather radar

Venkatesh, Vijay 01 January 2013 (has links)
Over the past few decades, several single radar methods have been developed to probe the kinematic structure of storms. All these methods trade angular-resolution to retrieve the wind-field. To date, the spaced-antenna method has been employed for profiling the ionosphere and the precipitation free lower atmosphere. This work focuses on applying the spaced-antenna method on an X-band active phased-array radar for high resolution horizontal wind-field retrieval from precipitation echoes. The ability to segment the array face into multiple displaced apertures allows for flexible spaced-antenna implementations. The methodology employed herein comprises of Monte-Carlo simulations to optimize the spaced-antenna system design and analysis of real data collected with the designed phased-array system. The contribution that underpins this dissertation is the demonstration of qualitative agreement between spaced-antenna and Doppler beam swinging retrievals based on real data. First, simulations of backscattered electric fields at the antenna array elements are validated using theoretical expressions. Based on the simulations, the degrees of freedom in the spaced-antenna system design are optimized for retrieval of mean baseline wind. We show that the designed X-band spaced-antenna system has lower retrieval uncertainty than the existing S-band spaced-antenna implementation on the NWRT. This is because of the flexibility to synthesize small overlapping apertures and the ability to obtain statistically independent samples at a faster rate at X-band. We then demonstrate a technique to make relative phase-center displacement measurements based on simulations and real data from the phased-array spaced-antenna system. This simple method uses statistics of precipitation echoes and apriori beamwidth measurements to make field repeatable phase-center displacement measurements. Finally, we test the hypothesis that wind-field curvature effects are common to both the spaced-antenna and Doppler beam swinging methods. Based on a close-range winter storm data set, we find that the spaced-antenna and fine-resolution Doppler beam swinging retrievals are in qualitative agreement. The correlation between the spaced-antenna and fine-resolution Doppler beam swinging retrievals was 0.57. The lowered correlation coefficient was, in part, due to the high standard deviation of the DBS retrievals. At high wind-speeds, the spaced-antenna retrievals significantly departed from variational retrievals of mean baseline wind.
12

Estimating optically-thin cirrus cloud induced cold bias on infrared radiometric satellite sea surface temperature retrieval in the tropics

Marquis, Jared Wayne 22 October 2016 (has links)
<p> Passive longwave infrared radiometric satellite-based retrievals of sea surface temperature (SST) at instrument nadir are investigated for cold bias caused by unscreened optically-thin cirrus (OTC) clouds (cloud optical depth &le; 0.3; COD). Level 2 split-window SST retrievals over tropical oceans (30&deg; S - 30&deg; N) from Moderate Resolution Imaging Spectroradiometer (MODIS) radiances collected aboard the NASA Aqua satellite (Aqua-MODIS) are collocated with cloud profiles from the Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) instrument, mounted on the independent NASA CALIPSO satellite. OTC are present in approximately 25% of tropical quality-assured (QA) Aqua-MODIS Level-2 data, representing over 99% of all contaminating cirrus found. This results in cold-biased SST retrievals using either split- (MODIS, AVHRR and VIIRS) or triple-window (AVHRR and VIIRS only) retrieval methods. SST retrievals are modeled based on operational algorithms using radiative transfer model simulations conducted with a hypothetical 1.5 km thick OTC cloud placed incrementally from 10.0 - 18.0 km above mean sea level for cloud optical depths (COD) between 0.0 - 0.3. Corresponding cold bias estimates for each sensor are estimated using relative Aqua-MODIS cloud contamination frequencies as a function of cloud top height and COD (assuming them consistent across each platform) integrated within each corresponding modeled cold bias matrix. Split-window relative OTC cold biases, for any single observation, range from 0.40&deg; - 0.49&deg; C for the three sensors, with an absolute (bulk mean) bias between 0.10&deg; - 0.13&deg; C. Triple-window retrievals are more resilient, ranging from 0.03&deg; - 0.04&deg; C relative and 0.11&deg; - 0.16&deg; C absolute. Cold biases are constant across the Pacific and Indian Ocean domains. Absolute bias is smaller over the Atlantic, but relative bias is larger due to different cloud properties indicating that this issue persists globally.</p>
13

Analyses for a Modernized GNSS Radio Occultation Receiver

Griggs, Erin R. 11 June 2015 (has links)
<p>Global Navigation Satellite System (GNSS) radio occultation (RO) is a remote sensing technique that exploits existing navigation signals to make global, real-time observations of the Earth's atmosphere. A specialized RO receiver makes measurements of signals originating from a transmitter onboard a GNSS spacecraft near the Earth's horizon. The radio wave is altered during passage through the Earth's atmosphere. The changes in the received signals are translated to the refractivity characteristics of the intervening medium, which enable the calculation of atmospheric pressure, temperature, and humidity. Current satellite missions employing GNSS RO have provided invaluable and timely information for weather and climate applications. Existing constellations of occultation satellites, however, are aging and producing fewer quality measurements. Replacement fleets of RO satellites are imperative to sustain and improve the global coverage and operational impact achieved by the current generation of RO satellites. This dissertation describes studies that facilitate the development of next generation RO receivers and satellite constellations. Multiple research efforts were conducted that aim to improve the quantity and quality of measurements made by a future satellite-based RO collection system. These studies range in magnitude and impact, and begin with a receiver development study using ground-based occultation data. Future RO constellations and collection opportunities were simulated and autonomous occultation prediction and scheduling capabilities were implemented. Finally, a comprehensive study was conducted to characterize the stability of the GNSS atomic frequency standards. Oscillator stability for a subset of satellites in the GNSS was found to be of insufficient quality at timescales relevant to RO collections and would degrade the atmospheric profiling capabilities of an RO system utilizing these signals. Recommendations for a high-rate clock correction network are proposed, which provides significant improvement to the fractional errors in the derived refractivity, pressure, and temperature values caused by the oscillator instabilities.
14

Tomographic imaging and characterization of ionospheric equatorial plasma irregularities with the Global Ultraviolet Imager /

Comberiate, Joseph Michael, January 2006 (has links)
Thesis (Ph.D.)--University of Illinois at Urbana-Champaign, 2006. / Source: Dissertation Abstracts International, Volume: 68-02, Section: B, page: 1171. Adviser: Farzad Kamalabadi. Includes bibliographical references (leaves 108-114) Available on microfilm from Pro Quest Information and Learning.
15

Analysis of rainfall-triggered landslide hazards through the dynamic integration of remotely sensed, modeled and in situ environmental factors in El Salvador

Anderson, Eric Ross 21 September 2013 (has links)
<p> Landslides pose a persistent threat to El Salvador's population, economy and environment. Government officials share responsibility in managing this hazard by alerting populations when and where landslides may occur as well as developing and enforcing proper land use and zoning practices. This thesis addresses gaps in current knowledge between identifying precisely when and where slope failures may initiate and outlining the extent of the potential debris inundation areas. Improvements on hazard maps are achieved by considering a series of environmental variables to determine causal factors through spatial and temporal analysis techniques in Geographic Information Systems and remote sensing. The output is a more dynamic tool that links high resolution geomorphic and hydrological factors to daily precipitation. Directly incorporable into existing decision support systems, this allows for better disaster management and is transferable to other developing countries.</p>

Page generated in 0.1032 seconds