• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 153
  • 3
  • Tagged with
  • 156
  • 156
  • 156
  • 156
  • 156
  • 156
  • 19
  • 18
  • 18
  • 18
  • 13
  • 13
  • 12
  • 11
  • 11
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
41

A Model Investigation of Photoionization Delay for Atomic Clusters

Moretti, Francesco January 2018 (has links)
No description available.
42

Direct imaging of Stimulated Raman scattering : 3D spatial control and spatial generation

Eriksson, Ronja January 2022 (has links)
Stimulated Raman scattering (SRS) is a powerful imaging technique that has become popular during the last decades for its ability to image species specific in a sample with high accuracy. The purpose of this thesis is twofold. Firstly, to demonstrate 3D spatial control of where in the sample SRS is generated. Secondly, the spatial behavior of the SRS generation is investigated by experiments and simulations. SRS is a nonlinear scattering phenomenon that is produced when a sample is illuminated with two laser beams, called Stokes and pump beams, whose frequency difference corresponds to a molecular vibration caused by inelastic scattering of an incoming photon. The Stokes beam will stimulate the scattering of the pump beam photons, which leads to an intensity gain in the Stokes beam and an intensity loss in the pump beam. Imaging of SRS is usually performed by point scanning a sample in a laser scanning microscope by the two laser beams. Thereafter, the image is constructed pixel by pixel by detecting either the gain or the loss. Our aim is to perform direct field of view SRS imaging. Two experimental setups are presented in this thesis, one for the 3D spatial control of SRS and one for the investigation of the spatial generation of SRS.  The working principle of imaging is the same in both setups. A cylindrical sample volume was illuminated with the Stokes beam and the SRS was generated by focusing the pump beam into this volume. The diameter of the illuminated cylinder was around 10 mm. The two beams were combined before the sample using a dichroic mirror and after the sample the pump beam was removed by a second dichroic mirror.  The Stokes light was then image onto a camera providing a field of view of around 9.4 mm by 7.94 mm. A phase spatial light modulator (SLM) was used to control the shape and position of the pump beam in three dimensions (3D) in the illuminated volume. The results show that the SLM allowed for control of the position and shape of the generated SRS signal. In the second experimental setup the pump beam was focused into the sample by a lens and the spatial generation of the SRS was investigated. A second dichroic mirror blocking the pump beam was inserted into the sample at different interaction lengths to study the resulting SRS signal. Further, the pump intensity was varied to study the effect on the physical width of the SRS signal. The experimental results were compared to computer simulations. The simulations were based on diffraction theory for the beam propagation and the interaction between the light beams and the material was modeled with a phase modulation due to the induced Kerr effect caused by high pump intensity. The results shows that most of the SRS generation takes place close to the focus of the pump beam.
43

Laser dazzling of CMOS imaging sensors using amplitude modulated and continuous wave lasers

Fjellström, Johan January 2023 (has links)
Protecting sensitive information is important, especially in defence applications. As cameras become more common, developing countermeasure systems that limit the information gathering capabilities of imaging sensors would be beneficial. Such a countermeasure system can be based on laser dazzling of imaging sensors, which will impair the information gathering capabilities of the sensor if the countermeasur esystem is designed correctly. In order for laser dazzling to be viable as a countermeasure in practical use cases, the dazzling effect needs to be predictable and practically achievable. An existing model predicting the dazzle effect of continuous wave laser irradiance on the front optics of imaging sensors was successfully verified. This was achieved by collecting experimental data using three complementary metal-oxide semiconductor (CMOS) imaging sensors. An amplitude modulated laser was used to dazzle an imaging sensor with the automatic gain control (AGC) and automatic exposure (AE) functions of the sensor enabled. The AGC function dynamically adjusts the image gain and the AE function dynamically adjusts the shutter speed of the sensor to optimise the settings for the given lighting conditions. The impact of the AGC and AE function corrections on the image information content was investigated for a set of lighting conditions, modulation frequencies and modulation duty cycles by collecting data with a CMOS sensor. The dazzling effect was compared to the dazzling effect when using continuous wave lasers. The analysis indicate that the amplitude modulated laser dazzling performance is subpar to the continuous wave laser dazzling performance for the tested configurations. Additionally, the predictability of the modulated laser dazzling effect is complex and depends on more parameters. A model based on this technique would also be sensitive to parameter changes. The weak predictability combined with the subpar performance compared to the continuous wave laser dazzling limits the usefulness of amplitude modulated laser dazzling in practical use cases.
44

Polymeric Microcavities for Dye Lasers and Wavefront Shapers

Ricciardi, Sébastien January 2008 (has links)
Over the last few years, the available computing power allows us to have a deeper insight into photonics components than we ever had before. In this thesis we use the finite element method (FEM) to explore the behavior of the waves in 2D planar microcavities. We demonstrate the tunability of the cavity over a wide range of frequencies taking into account both the thermo-mechanical and the thermo-optical effect. Geometry and material choices are done so that the latter is predominant. We also demonstrate an odd mode disappearing phenomenon reported here for the first time as far as we know. Using this knowledge, we design two structures with these remarkable properties. One of the devices will be used as micro-sized solid-state dye laser with Rhodamine 6G as the active medium and SU-8 polymer as a cavity material in sizes that have never been reached before. This opens new opportunities not only for future implementation for “labs-on-a-chip” (LOC) but also for a higher integration density of optical communication systems. The second device is a wavefront shaper creating plane waves from a point source performing the functions of beam shaper and beam splitter with plane wave as the output result. After an introduction to FEM and comparison with a rival algorithm, some issues related to FEM in electromagnetic simulation are resolved and explained. Finally, some fabrication techniques with feature sizes <100 nm, such as electron beam lithography (EBL) and nano-imprint lithography (NIL), are described and compared with other lithographic techniques. / QC 20101119
45

Finite element density functional description of linear molecules

Nygren, Malin January 2024 (has links)
This report describes a project performed at Linnaeus University with the task of solving the Schrodinger equation for electrons in homonuclear diatomic molecules, using the finite element method in Python. The Schrodinger equation is solved for the hydrogen atom, nitrogen atom, hydrogen molecule and nitrogen molecule using a finite element method. The results of the hydrogen atom showed a high accuracy compared to the analytical solution, given that the domain had high enough resolution. The solutions of the hydrogen molecule, nitrogen atom and nitrogen molecule showed reasonable accuracy although the resolution appeared sufficient. This foundation of Python code can be further built upon to explore more molecules and more properties, such as total energies and vibrational energies.
46

Breaking the Unbreakable : Exploiting Loopholes in Bell’s Theorem to Hack Quantum Cryptography

Jogenfors, Jonathan January 2017 (has links)
In this thesis we study device-independent quantum key distribution based on energy-time entanglement. This is a method for cryptography that promises not only perfect secrecy, but also to be a practical method for quantum key distribution thanks to the reduced complexity when compared to other quantum key distribution protocols. However, there still exist a number of loopholes that must be understood and eliminated in order to rule out eavesdroppers. We study several relevant loopholes and show how they can be used to break the security of energy-time entangled systems. Attack strategies are reviewed as well as their countermeasures, and we show how full security can be re-established. Quantum key distribution is in part based on the profound no-cloning theorem, which prevents physical states to be copied at a microscopic level. This important property of quantum mechanics can be seen as Nature's own copy-protection, and can also be used to create a currency based on quantummechanics, i.e., quantum money. Here, the traditional copy-protection mechanisms of traditional coins and banknotes can be abandoned in favor of the laws of quantum physics. Previously, quantum money assumes a traditional hierarchy where a central, trusted bank controls the economy. We show how quantum money together with a blockchain allows for Quantum Bitcoin, a novel hybrid currency that promises fast transactions, extensive scalability, and full anonymity. / En viktig konsekvens av kvantmekaniken är att okända kvanttillstånd inte kan klonas. Denna insikt har gett upphov till kvantkryptering, en metod för två parter att med perfekt säkerhet kommunicera hemligheter. Ett komplett bevis för denna säkerhet har dock låtit vänta på sig eftersom en attackerare i hemlighet kan manipulera utrustningen så att den läcker information. Som ett svar på detta utvecklades apparatsoberoende kvantkryptering som i teorin är immun mot sådana attacker. Apparatsoberoende kvantkryptering har en mycket högre grad av säkerhet än vanlig kvantkryptering, men det finns fortfarande ett par luckor som en attackerare kan utnyttja. Dessa kryphål har tidigare inte tagits på allvar, men denna avhandling visar hur även små svagheter i säkerhetsmodellen läcker information till en attackerare. Vi demonstrerar en praktisk attack där attackeraren aldrig upptäcks trots att denne helt kontrollerar systemet. Vi visar också hur kryphålen kan förhindras med starkare säkerhetsbevis. En annan tillämpning av kvantmekanikens förbud mot kloning är pengar som använder detta naturens egna kopieringsskydd. Dessa kvantpengar har helt andra egenskaper än vanliga mynt, sedlar eller digitala banköverföringar. Vi visar hur man kan kombinera kvantpengar med en blockkedja, och man får då man en slags "kvant-Bitcoin". Detta nya betalningsmedel har fördelar över alla andra betalsystem, men nackdelen är att det krävs en kvantdator.
47

Entangled photon triplets produced by a third order SPDC process

Widerström, Michel January 2017 (has links)
This thesis describes the work performed at the Quantum Optics lab at UNAM,Mexico City. Third order spontaneous parametric down conversion (TOSPDC) isa quantum optical process where an incoming photon is annihilated and generatesthree quantum entangled photons, so called photon triplets, under energy and mo-mentum conservation. This TOSPDC process was experimentally realized using afused silica optical fiber as nonlinear source. The spectra of the emitted signal weremeasured and coincidence counts measurements were performed in order to verifythe generation of these triplets. An average of 0.8 triplets per second were detected,which is the first sign of a realized TOSPDC process to our knowledge. At thispoint, the signal was too low for any spectra to be recorded. There is a lot of roomfor improvements, especially regarding the equipment used due to the heavy signalloss throughout the experimental setup, and more experiments will be performed toproperly verify the production and entanglement of the triplet photons.
48

Construction and development of a low-cost hyperspectral imaging system

Grigoriev, Nikita January 2022 (has links)
Quantification of spectral data is of great interest in many fields of science, since it can provide further insight into other properties of an object. However, traditional cameras are usually made to image the world in a similar fashion as to how we see it, wherefore they are usually not fit to record nor measure further spectral information. To get a better insight into the spectral properties of an object, a hyperspectral camera might be of use, since those can often identify and measure hundreds of different spectral bands. In this study we look at the construction and further development of an existing design of a push broom hyperspectral imaging system, built with optics for a fraction of the cost of commercial ones. With developed software and objects at hand a spectral calibration was performed, showing a possible spectral range of 184(2)-918(11) nm, but the use of the whole spectral range was however not possible due to limitations in the transmissivity of the lenses below 350 nm. A shift of the spectral range towards longer wavelengths is proposed, which would give further insight into the near infrared spectrum without any information losses. It was found that the spectral calibration of the imager was the main limiting factor of the system, since inaccuracies up to ±11 nm were identified, while the resolution has been found to be 1.4 nm in previous studies, proving that better calibrations are of essence. In good operating conditions, the resolution in the angle of view of the imager was found to be 0.55 mdeg. If the measurement conditions are not as good, or if such kind of spatial resolution is not required, a camera with a smaller detector size and larger pixels could be used to lower the cost of the system without a deterioration in image quality, since the uncertainties in the calibrations and measurement conditions were found to be the limiting factor.
49

Twist-Symmetric Periodic Structures : Properties and Applications

Zetterström, Oskar January 2021 (has links)
In this thesis, periodic structures with higher symmetries symmetries are discussed. The main focus of the thesis is on twist symmetries. Importantly, the attractive properties of twist symmetries for the control of electromagnetic wave propagation are demonstrated. Furthermore, the additional degree of freedom offered by twist symmetries is used to design two microwave devices. A structure is twist-symmetric if its periodicity can be described by the geometrical operation consisting of a translation and a rotation around an axis. In this thesis, it is demonstrated that there are no stop-bands between the first q modes in the Brillouin diagram of a twist-symmetric structure, where q is the symmetry order. The importance of the symmetry to the absence or presence of stop-bands is illustrated by studying structures where the symmetry is gradually broken. Furthermore, it is demonstrated that a twist-symmetric structure can produce a higher and less dispersive effective refractive index, compared to a conventional periodic structure. These characteristics are attractive for the design of microwave devices. To provide insight into the physics of twist symmetry, a mode matching formulation is derived to analyze twist-symmetric coaxial transmission lines. The formulation is used to highlight the importance of higher order coupling on the response in structures with varying order of the twist symmetry.  In this thesis, we also discuss another type of symmetry; polar glide symmetry. A periodic structure possesses a polar glide symmetry if its periodicity can be described by the geometrical operation consisting of a translation and a reflection in a cylindrical surface. It is demonstrated that there is no stop-band between the first two modes in a polar glide structure, which is similar to what has been reported for Cartesian glide symmetry previously. Furthermore, twist symmetry and polar glide symmetry is combined into twisted polar glide symmetry. The effect of this combination on the stop-band between the second and third modes is demonstrated. It is concluded that this type of symmetry finds application in filter design. Finally, the additional design freedom offered by twist symmetry is used to produce two microwave components. A reconfigurable phase shifter is designed, where the phase delay in the phase shifter depends on the order of the twist symmetry. Furthermore, a flat lens is designed to transform a spherical wave into a quasi-planar wave. The focusing properties of the lens is obtained by locally varying the order of the symmetry throughout the lens aperture. / I denna avhandling diskuteras periodiska strukturer med högre symmetrier. Huvudfokus av avhandlingen är skruvsymmetrier. Vi visar de attraktiva egenskaperna av skruvsymmetrier för kontrollen av elektromagnetiska vågor. Dessutom används den extra designfriheten från skruvsymmetrier för att designa två mikrovågskomponenter. En struktur är skruvsymmetrisk om dess period kan beskrivas av en geometriska operation bestående av en translation och en rotation runt en axel. I denna avhandling visar vi att det inte finns några bandgap mellan de första q moderna i Brillouindiagrammet för en skruvsymmetrisk struktur, där q är symmetriordningern. Betydelsen av symmetri för frånvaron och närvaron av bandgap illustreras genom att studera strukturer där symmetrin gradvis bryts. Vidare visar vi att en skruvsymmetrisk struktur kan producera ett högre och mindre dispersivt effektivt refraktivt index jämfört med en vanlig periodisk struktur. Dessa egenskaper är attraktiva i designen av mikrovågskomponenter. För att ge insikt i fysiken bakom skruvsymmetrier tas en modmatchningsformulering fram för att studera skruvsymmetriska koaxiala transmissionsledare. Formuleringen används för att belysa vikten av högre ordnings vågkoppling för egenskaperena i strukturer med olika ordnings skruvsymmetri.  I denna avhandling diskuteras ytterliage en typ av högre symmetri; polär glidsymmetri. En struktur har en polär glidsymmetri om dess period kan beskrivas av en geometriska operation bestående av en translation och en spegling i en cylindrisk yta. Vi visar att det inte finns något bandgap mellan de två första moderna i en struktur med polär glidsymmetri, vilket också tidigare visats för Cartesisk glidsymmetri. Vidare kombinerar vi skruv- och polär glidsymmetri. Implikationerna av denna kombination på bandgapet mellan högre moder diskuteras. Vi kommer fram till att denna typ av kombinerad symmetri finner tillämpningar i filterdesign.  Slutligen används den extra designfriheten från skruvsymmetri för att designa två mikrovågskomponenter. En konfigurerbar fasskiftare designas, där fasskiftningen beror på symmetriordningen. Vidare designas en platt lins som omvandlar en sfärisk våg till en kvasiplan våg. Fokuseringsegenskaperna i linsen uppnås genom att lokalt variera symmetriordningen i linsens apertur. / <p>QC 20211103</p>
50

Spontaneous Parametric Down-Conversion

Otero Casal, Pedro January 2022 (has links)
Calculation of number of photon pairs produced by type-I degenerate Spontaneous Parametric Down-Conversion inside a BBO crystal.

Page generated in 0.1032 seconds