Spelling suggestions: "subject:"atomic cases"" "subject:"atomic bases""
1 |
Gás de Bose diluído fracamente confinado / Dilute Bose gas weakly confined.Alejo Martinez, Harley 24 September 2018 (has links)
Orientador: Guillermo Gerardo Cabrera Oyarzun / Dissertação (mestrado) - Universidade Estadual de Campinas, Instituto de Fisica Gleb Wataghin / Made available in DSpace on 2018-09-24T17:47:25Z (GMT). No. of bitstreams: 1
AlejoMartinez_Harley_M.pdf: 11932489 bytes, checksum: f245a8fe554158b8ad494f6d80441a06 (MD5)
Previous issue date: 2010 / Resumo: Esta dissertação tem como objetivo apresentar um estudo crítico dos condensados atômicos de Bose-Einstein (BEC). Tomando como ponto de partida a física do gás livre, estudamos o efeito de potenciais fracamente confinantes. Dois casos foram estudados em detalhe: i) um gás atômico em um poço de potencial quadrado finito com poucos estados ligados; e ii) um sistema confinado em duas dimensões por um potencial oscilador harmônico isotrópico, sendo fracamente confinado na terceira dimensão. Para o primeiro exemplo, estudamos as propriedades termodinâmicas, comparândo-as com a transição de fase do gás livre, Interações entre bósons são introduzidas segundo a teoria de Bogoliubov para tratar interações elásticas de dois corpos. Dentro da aproximação de campo médio, as propriedades do condensado são descritas por uma função de onda macroscópica, que satisfaz a equação de Gross-Pitaevskii (GP). Analisamos os efeitos de comprimentos de espalhamento de onda 5, atrativos e negativos, para BEC aprisionados no poço de potencial finito, onde o sistema suporta excitações quânticas coerentes não-lineares. Soluções numéricas, para a equação GP independente do tempo, foram encontradas para a função de onda do estado condensado a temperatura zero, bem como para as suas excitações elementares não lineares. Para analisar os resultados, usamos valores realistas de parâmetros para os gases atômicos atualmente estudados experimentalmente. Para o segundo caso mencionado acima, desenvolvemos um programa destinado ao estudo de não-linearidades mais gerais. A física não é restrita só ao BEC, alguns sistemas de interesse são modelados por famílias de equações de Schrõdinger não-lineares, sendo a equação GP um caso particular. Para um potencial harmônico, apesar da não-linearidade, uma vez que uma solução é conhecida, muitas outras soluções podem ser construídas por uma translação espacial do centro do pacote de onda. O método é testado analiticamente no limite da equação de Schrõdinger linear com um potencial de oscilador harmônico em duas dimensões. As soluções são obtidas através de uma superposição de soluções estacionárias construídas por deslocamentos espaciais de uma solução exata. O método pode ser estendido para o regime de não-linearidades fracas, e tem uma aplicação direta na geração de estados vórtice em BEC / Abstract: A critical study of atomic Bose-Einstein condensates (BECs) is presented. Taking as a starting point the physics of the free gas, we study the effect of weakly confining potentials. Two cases were studied in detail: i) an atomic gas in a finite square well potential with a few bound states; and ii) a system confined in two-dimensions by an isotropic harmonic oscillator potential, while being weakly confined in the third dimension. For the first example, we study the thermodynamic properties, comparing with the phase transition of the free gas. Interactions between bosons are introduced following Bogoliubov' s approach to treat two-body elastic interactions. Within the mean field approximation, the properties of the condensate are described by a macroscopic wave function, which satisfies the Gross-Pitaevskii equation (GPE). We analyze the effects of both, positive and negative s-wave scattering lengths for BEC trapped in a finite well, where the system supports quantum nonlinear coherent excitations. Numerical solutions for the time-independent GPE have been found for the condensate wave function at zero temperature, as well as for its nonlinear elementary excitations. To analyze the results, we use realistic values of pararneters for atomic gases currently been studied experimentally. For the second case mentioned above, we develop a program aimed at the study of more general nonlinearities. The physics is not restricted only to BEC, and the systems of interest are modeled by families of non-linear Schödinger equations, being the GPE a particular case. For the harmonic potential, in spite of the nonlinearities, once a solution is known, many other solutions can be constructed by spatial translations of the center of the wave packet. The method is probed analytically in the limit of the linear Schödinger. equation with a harmonic oscillator potential in two dimensions. Solutions are obtained through a superposition of stationary solutions built fIam spatial displacements of an exact solution. The method can be extended to the regime of weak nonlinearities, and has a direct application in generating vortex states in BEC / Mestrado / Física da Matéria Condensada / Mestre em Física
|
2 |
Conditional many-body dynamics and quantum control of ultracold fermions and bosons in optical lattices coupled to quantized lightMazzucchi, Gabriel January 2016 (has links)
We study the atom-light interaction in the fully quantum regime, with the focus on off-resonant light scattering into a cavity from ultracold atoms trapped in an optical lattice. Because of the global coupling between the atoms and the light modes, observing the photons leaking from the cavity allows the quantum nondemolition (QND) measurement of quantum correlations of the atomic ensemble, distinguishing between different quantum states. Moreover, the detection of the photons perturbs the quantum state of the atoms via the so-called measurement backaction. This effect constitutes an unusual additional dynamical source in a many-body strongly correlated system and it is able to efficiently compete with its intrinsic short-range dynamics. This competition becomes possible due to the ability to change the spatial profile of a global measurement at a microscopic scale comparable to the lattice period, without the need of single site addressing. We demonstrate nontrivial dynamical effects such as large-scale multimode oscillations, breakup and protection of strongly interacting fermion pairs. We show that measurement backaction can be exploited for realizing quantum states with spatial modulations of the density and magnetization, thus overcoming usual requirement for a strong interatomic interactions. We propose detection schemes for implementing antiferromagnetic states and density waves and we demonstrate that such long-range correlations cannot be realized with local addressing. Finally, we describe how to stabilize these emerging phases with the aid of quantum feedback. Such a quantum optical approach introduces into many-body physics novel processes, objects, and methods of quantum engineering, including the design of many-body entangled environments for open systems and it is easily extendable to other systems promising for quantum technologies.
|
3 |
Functional renormalisation group and nuclear matterJaramillo Avila, Benjamin Raziel January 2015 (has links)
This thesis deals with systems of interacting particles with very low energy in the limit where the particle-particle scattering is much larger than the range of the interactions. We use a quantum-field-theory approach which allows us to study both few-body and dense-matter systems in a unified framework. This allows to introduce composite fields of two and three particles (when appropriate). The quantum corrections are calculated nonperturbatively with the Functional RenormalisationGroup. We deal with three types of systems. First we study systems with three and four scalar particles. For three-particle systems our framework describes the Efimov effect. During the FRG flow in the scaling limit, the four-particle system has an infinite sequence of (unphysical) four-particle states on top of each Efimov trimer. This is a case of super Efimov behaviour. Three of these four-particle states survive to the physical limit. Two of these three states have been found in exact quantum-mechanical calculations, and have also been observed in gases of ultracold atoms. Next, this thesis studies systems of three and four spin-1/2 particles. In the scaling limit, we find attractive fixed points for the three- and four-particle systems. Out of the scaling limit, we study atom-molecule scattering and molecule-molecule scattering, in particular their scattering length. Finally, we study dense-matter systems of spin-1/2 particles. This calculation includes all the two-, three-, and four-particle interactions. These systems show spontaneous symmetry breaking: the two-particle field has a finite classical value. We find the value of the atom gap in units of the chemical potential.
|
4 |
Phases classiques et quantiques des systèmes dipolaires de basse dimensionnalité / Classical and quantum phases of low-dimensional dipolar systemsCartarius, Florian 22 September 2016 (has links)
Cette thèse étudie les phases classiques et quantiques des systèmes atomiques ou moléculaires de basse dimension en mettant un accent particulier sur le crossover dimensionnel de une à deux dimensions.La première partie de la thèse est consacrée à la description d'un système d'atomes froids interagissants avec un potentiel de contact. Plus précisément, nous étudions le dé-piégeage dynamique qui, suite à l'extinction rapide d'un réseau optique, s'opère dans un gaz composé de bosons impénétrables dans un guide d'onde atomique linéaire. Nous employons une solution exacte, basée sur une correspondance entre bosons en forte interaction et fermions sans interaction pour déduire l'évolution dynamique quantique exacte. Dans la limite thermodynamique, nous observons l'approche vers un état stationnaire hors équilibre, caractérisé par l'absence d'ordre hors diagonal à longue distance et une visibilité réduite de la distribution en impulsions. Des caractéristiques similaires sont observées dans un système de taille finie pour des temps correspondant à la moitié du temps de récurrence, lors desquels nous observons que le système approche un état quasi-stationnaire auquel le système s'approche avec une dépendance temporelle en loi de puissance.La deuxième partie de la thèse analyse l'effet des interactions dipolaires sur l'état fondamental du système. L'inclusion de l'interaction dipôle-dipôle donne lieu à de nouvelles phases quantiques du système unidimensionnel, mais peut également entraîner une instabilité transverse.Cette instabilité est tout d'abord analysée dans le régime classique. Nous considérons des particules classiques avec interactions dipolaires, confinés sur un anneau par un potentiel harmonique radiale. Les dipôles sont polarisés perpendiculairement au plan de confinement. En diminuant le confinement dans la direction radiale, les particules classique montrent une transition entre une chaîne simple et une chaîne double (en zigzag). Nous montrons que cette transition est faiblement du premier ordre. Nous expliquons que la nature de cette transition est déterminée par le couplage entre les modes d'excitation transversaux et axiaux de la chaîne des dipôles. Ce résultat est très différent du comportement observé dans les systèmes Coulombiens, où la transition entre la chaîne linéaire et la chaîne en zigzag est continue et appartient à la classe d'universalité de la transition ferromagnétique. Nos résultats s'appliquent aux systèmes dipolaires classiques et aux atomes Rydberg, qui peuvent constituer un banc d'essai pour simuler le comportement critique des aimants couplés à des grilles.Dans le régime quantique, nous considérons un système des bosons dipolaires sur un réseaux optique, confinés par un potentiel harmonique anisotrope. Dans le régime favorisant l'instabilité d'une chaîne simple, nous démontrons que le système peut être décrit par un modèle de Bose-Hubbard étendu à plusieurs modes couplés entre eux, dont les coefficients peuvent être déterminés en utilisant une théorie de basse énergie. La méthode d'intégrale de chemin Monte Carlo, la diagonalisation exacte et TEBD sont utilisés pour déterminer l'état fondamental de modèle de Bose-Hubbard étendu et démontrent que ce modèle capture la transition entre la chaîne linéaire et la chaîne en zigzag. / In this work, the classical and quantum phases of low-dimensional atomic or molecular systems is studied with a particular focus on the regime where a system goes over from a strictly one-dimensional to a two dimensional system.The first part of the thesis is dedicated to atoms interacting via contact interactions. In particular, we study the dynamical depinning following a sudden turn off of an optical lattice for a gas of impenetrable bosons in a tight atomic waveguide. We use an exact solution, which is based on an equivalence between strongly interacting bosons and noninteraction fermions, in order to derive the exact quantum dynamical evolution. At long times, in the thermodynamic limit, we observe the approach to a nonequilibrium steady state, characterized by the absence of quasi-long-range order and a reduced visibility in the momentum distribution. Similar features are found in a finite-size system at times corresponding to half the revival time, where we find that the system approaches a quasisteady state with a power-law behavior.In the second part, we study the effect of additional dipolar interactions on the ground state of the system. The inclusion of dipole-dipole interaction leads to new quantum phases of the one-dimensional system, but can also lead to a transverse instability.This instability is first analyzed in the classical regime. We study classical particles with dipolar interactions, that are confined on a chain by a harmonic potential. The dipoles are polarised perpendicular to the plane of confinement. Classical particles with repulsive power-law interactions undergo a transition from a single to a double chain (zigzag) by decreasing the confinement in the transverse direction. We theoretically characterize this transition when the particles are classical dipoles, polarized perpendicularly to the plane in which the motion occurs, and argue that this transition is of first order, even though weakly. The nature of the transition is determined by the coupling between transverse and axial modes of the chain and contrasts with the behavior found in Coulomb systems, where the linear-zigzag transition is continuous and belongs to the universality class of the ferromagnetic transition. Our results hold for classical dipolar systems and Rydberg atoms, which can offer a test bed for simulating the critical behavior of magnets with lattice coupling.In the quantum regime, we consider dipolar bosons in an optical lattice, tightly confined by an anisotropic harmonic potential. In the regime where a single chain becomes unstable, we show that the system can be mapped onto an extended multi-mode Bose-Hubbard model, where the coefficients can be determined by means of a low energy theory. A path integral Monte Carlo method, exact diagonalization and TEBD are used to determine the ground state of the extended Bose-Hubbard models. and show that the model captures the linear to zigzag transition.
|
5 |
The effects of disorder in strongly interacting quantum systemsThomson, Steven January 2016 (has links)
This thesis contains four studies of the effects of disorder and randomness on strongly correlated quantum phases of matter. Starting with an itinerant ferromagnet, I first use an order-by-disorder approach to show that adding quenched charged disorder to the model generates new quantum fluctuations in the vicinity of the quantum critical point which lead to the formation of a novel magnetic phase known as a helical glass. Switching to bosons, I then employ a momentum-shell renormalisation group analysis of disordered lattice gases of bosons where I show that disorder breaks ergodicity in a non-trivial way, leading to unexpected glassy freezing effects. This work was carried out in the context of ultracold atomic gases, however the same physics can be realised in dimerised quantum antiferromagnets. By mapping the antiferromagnetic model onto a hard-core lattice gas of bosons, I go on to show the importance of the non-ergodic effects to the thermodynamics of the model and find evidence for an unusual glassy phase known as a Mott glass not previously thought to exist in this model. Finally, I use a mean-field numerical approach to simulate current generation quantum gas microscopes and demonstrate the feasibility of a novel measurement scheme designed to measure the Edwards-Anderson order parameter, a quantity which describes the degree of ergodicity breaking and which has never before been experimentally measured in any strongly correlated quantum system. Together, these works show that the addition of disorder into strongly interacting quantum systems can lead to qualitatively new behaviour, triggering the formation of new phases and new physics, rather than simply leading to small quantitative changes to the physics of the clean system. They provide new insights into the underlying physics of the models and make direct connection with experimental systems which can be used to test the results presented here.
|
6 |
Equilibrium and Nonequilibrium Behaviours of 1D Bose Gases / Comportements à l'équilibre et hors d'équilibre de gaz de Bose unidimensionnels.Fang, Yiyuan Bess 01 October 2014 (has links)
Les systèmes quantiques unidimensionnels à N corps présentent des comportements particuliers et intrigants liés à leur dimensionnalité réduite, qui amplifie l’effet des fluctuations et des corrélations. Les expériences de gaz d’atomes ultra-froids permettent d’isoler et de contrôler efficacement les paramètres du système et de simuler des systèmes modèles pour lesquels il existe de nombreux outils théoriques. Je présenterai ici les résultats des études réalisées pendant ma thèse de Doctorat, visant à explorer le comportement de gaz de Bose unidimensionnels (gaz de Lieb-Liniger) à l’équilibre et hors équilibre. Je donnerai notamment un aperçu de la boite à outils aujourd’hui disponible permettant de caractériser les propriétés thermodynamiques d’un gaz de Lieb-Liniger, et présenterai une étude détaillée du mode de respiration d’un tel système. / One-dimensional quantum many-body systems exhibit peculiar and intriguing behaviors as a consequence of the reduced dimensionality, which enhances the effect of fluctuations and correlations. The high degree of isolation and controllability of experiments manipulating ultra-cold atomic gases allows for the experimental simulation of text-book models, for which many theory tools are available for quantitative comparison. I will present instances of such efforts carried out during my PhD thesis, namely, the studies performed to investigate the behavior of 1D Bose gas (Lieb-Liniger gas) at equilibrium and beyond. An overview of the toolbox available to date to characterize the equilibrium thermodynamics of a Lieb-Liniger gas will be shown, followed by a detailed study of the breathing mode of such a system.
|
Page generated in 0.0675 seconds