• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • 1
  • Tagged with
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

A numerical model of drop-on demand droplet formation from a vibrating nozzle and a rigid nozzle

Yang, Guozhong 04 December 2003 (has links)
Droplet formation from a rigid and a vibration nozzle driven by a pulsing pressure is simulated. Droplet formation is simulated by using one-dimensional model. For the case of droplet formation from a vibration nozzle, the nozzle vibration is simulated by large deflection plate vibration equation. Droplet formation from a rigid nozzle is studied simply by setting the nozzle deflection always to be zero. The one-dimensional model is solved by MacCormack method. The large deflection plate vibration equation is solved by mode shape approximation and Runga--Kuta time integration method. Three different effect factors, the driving pressure thrust input effects, the fluid viscosity effects, and the nozzle vibration effects, on droplet formation are studied. The driving pressure thrust input effects and the fluid viscosity effects are studied based on a rigid nozzle. The nozzle vibration effects are studied by comparing the results from a vibration nozzle with the results from a rigid nozzle. Results show: 1) the primary droplet break-off time is constant if the driving pressure magnitude is high, but the primary droplet volume and primary droplet velocity increase slightly as the driving pressure thrust input increase; 2) higher thrust input can possibly result in the occurrence of overturn phenomenon; 3) increasing the fluid viscosity cause the primary droplet break-off later, but the primary droplet volume and the primary droplet velocity does not change significantly by fluid viscosity; 4) the nozzle vibration effect on the primary droplet break-off time and the primary droplet size is small, but the nozzle vibration cause the primary droplet velocity to increase by an amount of the nozzle vibration velocity magnitude; 5) nozzle vibration cause longer liquid thread to form and the total satellite droplet volume to increase significantly which eventually break into multiple satellite droplet. / Graduation date: 2004
2

Expiratory droplet exposure between individuals in a ventilated room

Liu, Li, 刘荔 January 2011 (has links)
Interpersonal transport of expiratory droplets and droplet nuclei constitutes a prerequisite for the transmission of pathogens as well as the transmission of respiratory diseases. This study modeled the physical process of interpersonal transport of droplets and droplet nuclei in a ventilated room. The impacts of a number of parameters in three length scales and three corresponding physical processes were analyzed, including dispersion and evaporation of droplets/droplet nuclei at 1 to 100 μm, human exhalation flows and body plumes at 0.1 to 1 m, and the indoor environment at 1 to 10 m. The strong hygroscopicity of the solutes in the droplet is capable of keeping the droplet with an equilibrium size in humid air, larger than that of a dried particle. Mathematical models were developed to predict the droplet nucleus size in both dry air and humid air, by simplifying the composition of one expiratory droplet to NaCl solution and suspended spherical particles. For a droplet with an initial diameter of 100 μm, initial NaCl concentration of 0.9%, and initial solids ratio of 1.8%, the droplet nucleus size was estimated to be 42 μm in an ambient relative humidity of 90% (25°C), which is 30% larger than it was in a relative humidity of 30% (25°C). A numerical model was also developed to predict droplet evaporation and dispersion in a constant turbulent buoyant jet. Droplets with initial sizes larger than 80 μm were predicted to deposit on the floor at a distance of ~1.25 m (~1.7 m for 60 μm) away from the mouth, while droplets with initial sizes less than 40 μm travelled to the end of the jet. A series of experiments was conducted to assess the characteristics of human exhalation airflows and thermal plume, using a full-scale test room and a breathing thermal manikin. The impacts of the ventilation system were illustrated by comparing the velocity distribution of the exhalation airflows and airflows induced by thermal plume. Further experiments employing two breathing thermal manikins were carried out to evaluate the interpersonal transport of the expiratory contaminants that were simulated by tracer gas. When the two manikins with the same heights were standing face to face at a mutual distance of 0.8 m, the exhalation airflows from the mouth of the source manikin could directly travel into the breathing region of the susceptible manikin, resulting in a high exposure. The high exposure decreased sharply with an increase in the mutual distance from 0.5 m to 1.0 m. Between 1.0 m to 3.0 m, the exposure by the susceptible manikin remained at a low and constant level. Numerical simulations considering droplet evaporation and droplet nucleus sizes were carried out; and the impacts of the parameters of droplet initial size, humidity, vicinity, ventilation conditions and synchronization of exhalation were evaluated. Fine droplets and droplet nuclei were predicted to travel toward the upper part of the test room, whereas large droplets tend to be deposited on the floor. With a high relative humidity, 95%, most of the droplets were deposited on the floor within 16 seconds. Meanwhile, all of the droplets evaporated to droplet nuclei and remained suspended in the air when the relative humidity was 35%. Mixing ventilation that supplied fresh air with a ventilation rate of 5.6 h-1 resulted in drafts and strong turbulence, which made droplets and droplet nuclei dispersed in the room. The average vertical position was higher than that when the ventilation rate was 3.0 h-1. Displacement ventilation led to the vertical temperature stratification in the room. The vertical temperature gradient could neutralize the buoyancy force and weaken body plumes and the vertical dispersion of droplets and droplet nuclei. The inhalation of the droplets and droplet nuclei by the susceptible person and the deposition of the droplets and droplet nuclei on the body surface of the susceptible person were investigated at mutual distances of 0.5, 1.0, 1.5 and 3.0 m. For one breath from the source person, 1,600 droplets were released. Three and 9 droplet nuclei were inhaled by the susceptible person at a mutual distance of 0.5 and 1.0 m, respectively. No droplet nuclei were inhaled at 1.5 and 3.0 m. / published_or_final_version / Mechanical Engineering / Doctoral / Doctor of Philosophy

Page generated in 0.315 seconds