Spelling suggestions: "subject:"atomization process"" "subject:"tomization process""
1 |
Simulation of atomization process coupled with forced perturbation with a view to modelling and controlling thermoacoustic instabilityYang, Xiaochuan January 2017 (has links)
Thermoacoustic instability is of fundamental and applied interest in both scientific research and practical applications. This study aims to explore several very important sub-aspects in this field and contribute to a better understanding of thermoacoustic instability as encountered in typical gas turbines and rocket engines. Atomization has been recognized as a key mechanism in driving applied thermoacoustic instability. In this regard, this study mainly focuses on the atomization process relevant for delineation of thermoacoustic instability, contributing to a comprehensive understanding of the effect of acoustics on primary and secondary atomization. Firstly, a tree-based adaptive solver and VOF method are employed to simulate the jet primary atomization. The code is validated by theoretical, numerical and experimental results to demonstrate its capability and accuracy in terms of atomization in both low-speed and high-speed regime. Perturbation frequency and amplitude have shown to affect the atomization significantly. Besides, the effect of acoustic forcing on liquid ligament has also been numerically investigated. A volume source term is introduced to extend the solver to model the compressible effects in the presence of acoustic forcing. The influence of acoustic wave number, amplitude and frequency has been examined in detail. In terms of modelling the thermoacoustic instability, bifurcation analysis is carried out for a time-delayed thermoacoustic system using the Method of Line approach. Good predictions have been obtained to capture the nonlinear behaviors inherent in the system. Moreover, model-based simulation and control of thermoacoustic instability have been conducted. A low-order wave-based network model for acoustics is coupled with nonlinear flame describing function to predict the nonlinear instability characteristics in both frequency and time domain. Furthermore, active feedback control is implemented. Two different controllers have been designed to eliminate the thermoacoustic instability to an acceptably low level and may be employed in a practical manner.
|
2 |
A Study of Waterjets : Characterization of waterjet in the water atomization processWiklund, Simon, Armstrong, Christopther January 2018 (has links)
This study was regarding the waterjets in the water atomization process. This is because the understanding of the waterjets is not complete and with a greater understanding the production of metal powder could be improved. The waterjets were going to be categorized according to their wave function, size and distribution of the droplets and the three regimes that Höganäs had divided up the jets into was also analyzed. The three regimes depend on the jets characteristics and the regimes are the transparent, milky and the droplet jet. The purpose was to get a better understanding of the correlation between velocity, temperature, waves, size and distribution of the droplets in a 50 cm long waterjet. The method to enhance the understanding of this project was to first do theoretical solution with the help of fluid dynamics. Weber, Reynolds and Ohnesorge number were calculated and evaluated to get a better understanding of the waterjet. Secondly, experiments were conducted where a waterjet with different nozzles and temperatures was filmed with a highspeed camera and the videos were analyzed with the help of a software package called ImageJ. The results show the correlation between increasing temperature and decreasing droplet size and a less cohesive waterjet core. The conclusion from the study was that with the help of temperature one can help control the droplet size. / Denna studie angår vattenstrålar i en vattenatomiserings process vid tillverkning av metallpulver och en bättre förståelse skulle förbättra tillverkningen av metallpulver. Vattenstrålen skulle kartläggas enligt dess vågfunktion, storlek och spridning av dropparna och de tre regionerna som Höganäs har delat upp vattenstrålen i skulle analyseras. Regionerna är beroende av strålens karaktäristiska utseenden vid olika delare av vattenstrålen och är genomskinlig, mjölkig och dropp stråle. Syftet med studien var att få en bättre förståelse av sambandet mellan hastighet, temperatur, vågor, storlek och spridning av dropparna i en 50 cm lång vattenstråle. Metoden som användes för att öka förståelsen av vattenstrålen var först en teoretisk del med hjälp av fluidmekanik. Weber, Reynolds och Ohnesorge tal beräknades och utvärderades för att ge en teoretisk förståelse för vattenstrålen. Sedan utfördes vattenflödesexperiment, där vattenstrålen filmades med olika munstycken och temperaturer med en höghastighetskamera och videon analyserades med hjälp av mjukvaran kallad ImageJ. Resultaten visar ett samband mellan ökad temperatur och minskad droppstorlek och en mer uppbruten kärna av vattenstrålen. Slutsatsen från studien var att man med hjälp av temperaturen kan reglera droppstorleken.
|
Page generated in 0.1066 seconds