Spelling suggestions: "subject:"attack modelling"" "subject:"cuttack modelling""
1 |
Cyber-Attack Modeling Analysis Techniques: An OverviewAl-Mohannadi, Hamad, Mirza, Qublai K.A., Namanya, Anitta P., Awan, Irfan U., Cullen, Andrea J., Pagna Disso, Jules F. January 2016 (has links)
Yes / Cyber attack is a sensitive issue in the world
of Internet security. Governments and business organisations
around the world are providing enormous effort to secure their
data. They are using various types of tools and techniques to
keep the business running, while adversaries are trying to breach
security and send malicious software such as botnets, viruses,
trojans etc., to access valuable data. Everyday the situation is
getting worse because of new types of malware emerging to attack
networks. It is important to understand those attacks both before
and after they happen in order to provide better security to
our systems. Understanding attack models provide more insight
into network vulnerability; which in turn can be used to protect
the network from future attacks. In the cyber security world, it
is difficult to predict a potential attack without understanding
the vulnerability of the network. So, it is important to analyse
the network to identify top possible vulnerability list, which will
give an intuitive idea to protect the network. Also, handling an
ongoing attack poses significant risk on the network and valuable
data, where prompt action is necessary. Proper utilisation of
attack modelling techniques provide advance planning, which
can be implemented rapidly during an ongoing attack event. This
paper aims to analyse various types of existing attack modelling
techniques to understand the vulnerability of the network; and
the behaviour and goals of the adversary. The ultimate goal is to
handle cyber attack in efficient manner using attack modelling
techniques.
|
2 |
Évaluation dynamique de risque et calcul de réponses basés sur des modèles d’attaques bayésiens / Dynamic risk assessment and response computation using Bayesian attack modelsAguessy, François-Xavier 22 September 2016 (has links)
Les systèmes d'information sont une cible de plus en plus attractive pour les attaquants. Dans cette thèse de doctorat, nous construisons une méthodologie complète d'analyse statique et dynamique de risque prenant en compte la connaissance à priori d'un système avec les événements dynamiques, afin de proposer des réponses permettant d'empêcher les attaques futures. Tout d'abord, nous étudions comment corriger les attaques potentielles qui peuvent arriver dans un système, en s'appuyant sur les graphes d'attaque logiques. Nous proposons une méthodologie de remédiation corrigeant les chemins d'attaque les plus significatifs. Les remédiations candidates sont classées en fonction de leur coût opérationnel et leur impact sur le système. Les graphes d'attaques ne peuvent pas être directement utilisés pour l'évaluation dynamique de risque. Nous étendons donc ce modèle pour construire des modèles d'analyse dynamique de risque basés sur des réseaux bayésiens. Le modèle hybride d'évaluation de risque se divise en deux modèles complémentaires: (1) Les modèles de corrélation de risque, permettant d'analyser les attaques en cours et fournir les probabilités de compromission des états du système, (2) les modèles d'évaluation du risque futur, permettant évaluer les attaques futures les plus probables. Nous analysons la sensibilité des paramètres probabilistes du modèle et en validons les résultats à partir de graphes d'attaque topologiques / Information systems constitute an increasingly attractive target for attackers. Given the number and complexity of attacks, security teams need to focus their actions, in order to select the most appropriate security controls. Because of the threat posed by advanced multi-step attacks, it is difficult for security operators to fully cover all vulnerabilities when deploying countermeasures. In this PhD thesis, we build a complete framework for static and dynamic risk assessment including prior knowledge on the information system and dynamic events, proposing responses to prevent future attacks. First, we study how to remediate the potential attacks that can happen in a system, using logical attack graphs. We build a remediation methodology to prevent the most relevant attack paths extracted from a logical attack graph. In order to help an operator to choose between several remediation candidates, we rank them according to a cost of remediation combining operational and impact costs. Then, we study the dynamic attacks that can occur in a system. Attack graphs are not directly suited for dynamic risk assessment. Thus, we extend this mode to build dynamic risk assessment models to evaluate the attacks that are the most likely. The hybrid model is subdivided in two complementary models: (1) the first ones analysing ongoing attacks and provide the hosts' compromise probabilities, and (2) the second ones assessing the most likely future attacks. We study the sensitivity of their probabilistic parameters. Finally, we validate the accuracy and usage of both models in the domain of cybersecurity, by building them from a topological attack graph
|
3 |
Cyber Attack Modelling using Threat Intelligence. An investigation into the use of threat intelligence to model cyber-attacks based on elasticsearch and honeypot data analysisAl-Mohannadi, Hamad January 2019 (has links)
Cyber-attacks have become an increasing threat to organisations as well as the wider public. This has led to greatly negative impacts on the economy at large and on the everyday lives of people. Every successful cyber attack on targeted devices and networks highlights the weaknesses within the defense mechanisms responsible for securing them. Gaining a thorough understanding of cyber threats beforehand is therefore essential to prevent potential attacks in the future. Numerous efforts have been made to avoid cyber-attacks and protect the valuable assets of an organisation. However, the most recent cyber-attacks have exhibited the profound levels of sophistication and intelligence of the attacker, and have shown conven- tional attack detection mechanisms to fail in several attack situations. Several researchers have highlighted this issue previously, along with the challenges faced by alternative solu- tions. There is clearly an unprecedented need for a solution that takes a proactive approach to understanding potential cyber threats in real-time situations.
This thesis proposes a progressive and multi-aspect solution comprising of cyber-attack modeling for the purpose of cyber threat intelligence. The proposed model emphasises on approaches from organisations to understand and predict future cyber-attacks by collecting and analysing network events to identify attacker activity. This could then be used to understand the nature of an attack to build a threat intelligence framework. However, collecting and analysing live data from a production system can be challenging and even dangerous as it may lead the system to be more vulnerable. The solution detailed in this thesis deployed cloud-based honeypot technology, which is well-known for mimicking the real system while collecting actual data, to see network activity and help avoid potential attacks in near real-time.
In this thesis, we have suggested a new threat intelligence technique by analysing attack data collected using cloud-based web services in order to identify attack artefacts and support active threat intelligence. This model was evaluated through experiments specifically designed using elastic stack technologies. The experiments were designed to assess the identification and prediction capability of the threat intelligence system for several different attack cases. The proposed cyber threat intelligence and modeling systems showed significant potential to detect future cyber-attacks in real-time. / Government of Qatar
|
Page generated in 0.0621 seconds