• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 7
  • 1
  • Tagged with
  • 10
  • 10
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Transient ultrasonic fields in power law attenuation media

Kelly, James F. January 2008 (has links)
Thesis (Ph. D.)--Michigan State University. Electrical Engineering, 2008. / Title from PDF t.p. (Proquest, viewed on Aug. 25, 2009) Includes bibliographical references (p. 184-194). Also issued in print.
2

Determination of the linear attenuation coefficients and buildup factors of MCP-96 alloy for use in tissue compensation and radiation protection

Hopkins, Deidre N. 24 July 2010 (has links)
The linear attenuation coefficient and buildup factor are a few of the important characteristics that need to be studied and determined prior to using a material clinically in radiation treatment and protection. The linear attenuation coefficient and buildup factor, as well as several other properties, will be determined for MCP-96 alloy to assess its use in radiation therapy. A narrow collimated beam of γ-rays from sources with varying energies will pass through various thicknesses of MCP-96 alloy. The attenuation in the intensity of the beam will be determined for each varying thickness of the alloy. Plotting the thickness of the alloy versus the corresponding logarithmic intensity of the beam will allow calculation of the linear attenuation coefficient. The narrow beam geometry will then be replaced by the broad beam geometry to determine the buildup factor. Additional radiation is obtained through the broad beam geometry as a result of scattering and secondary radiation. Comparing the broad beam geometry to the narrow beam geometry allows determination of the buildup factor. Since the buildup factor depends upon the thickness of the MCP-96 attenuator, the energy of the beam, and the source-to-attenuator (STA) distance, it will be calculated using three parameters. It will be calculated as a function of thickness of MCP-96 alloy by using various thicknesses of the alloy; as a function of the energy of the incident radiation beam by using several sources with different beam energies; and finally, as a function of the source-to-attenuator distance by changing the position of the MCP-96 attenuators. / Department of Physics and Astronomy
3

Colour correction of underwater images using spectral data /

Åhlen, Julia, January 2005 (has links)
Diss. (sammanfattning) Uppsala : Univ., 2005. / Härtill 7 uppsatser.
4

Attenuation and scatter correction of Tc99m-based and Tl-201 myocardial perfusion SPECT

Hsu, Bai-Ling, January 2004 (has links)
Thesis (Ph. D.)--University of Missouri-Columbia, 2004. / Typescript. Vita. Includes bibliographical references (leaves 170-182). Also available on the Internet.
5

Attenuation and scatter correction of Tc99m-based and Tl-201 myocardial perfusion SPECT /

Hsu, Bai-Ling, January 2004 (has links)
Thesis (Ph. D.)--University of Missouri-Columbia, 2004. / Typescript. Vita. Includes bibliographical references (leaves 170-182). Also available on the Internet.
6

A study of light attenuation in Monterey Bay, California

Crews, Thomas Walter. January 1971 (has links)
Thesis (M.S.)--Naval Postgraduate School, 1971. / Includes bibliographical references (leaves 141-142).
7

Development of method for measurement of passive losses in Cr²⁺:ZnSe and Cr²⁺:ZnS laser crystals using polarized laser beam

Arumugam, Anitha. January 2008 (has links) (PDF)
Thesis (M.S.)--University of Alabama at Birmingham, 2008. / Description based on contents viewed Feb. 10, 2009; title from PDF t.p. Includes bibliographical references (p. 33).
8

Spectral reconstruction for megavoltage X-ray sources from attentuation measurements

Huerta-Hernandez, Claudia I. January 2008 (has links)
Thesis (M.S.)--University of Texas at El Paso, 2008. / Title from title screen. Vita. CD-ROM. Includes bibliographical references. Also available online.
9

Array-Based Measurements of Surface Wave Dispersion and Attenuation Using Frequency-Wavenumber Analysis

Yoon, Sungsoo 20 July 2005 (has links)
Surface wave methods have been used to determine dynamic properties of near-surface soils in geotechnical engineering for the past 50 years. Although the capabilities of engineering surface wave methods have improved in recent years due to several advances, several issues including (1) near-field effects, (2) combined active and passive measurements, and (3) accurate measurements of surface wave attenuation still require study to further improve the capabilities of modern surface wave methods. Near-field effects have been studied for traditional surface wave methods with two receivers and several filtering criteria to mitigate the effects have been recommended. However, these filtering criteria are not applicable to surface wave methods with multiple receivers. Moreover, the criteria are not quantitatively based and do not account for different types of soil profiles, which strongly influence near-field effects. A new study of near-field effects on surface wave methods with multiple receivers was conducted with numerical and experimental methods. Two normalized parameters were developed to capture near-field effects. Quantitatively based near-field effect criteria for an ideal homogeneous half-space and three typical soil profiles are presented. Combining active and passive surface wave measurements allows developing a shear wave velocity profile to greater depth without sacrificing the near-surface resolution offered by active measurements. Generally, active and passive measurements overlap in the frequency range from approximately 4 to 10 Hz, and there are often systematic differences between the two measurements. The systematic errors in active and passive surface wave methods were explored to explain and resolve the differences, allowing for a more accurate composite dispersion curve. The accuracy of measured surface wave attenuation is improved by properly accounting for (1) geometric spreading, (2) near-field effects, and (3) ambient noise. In this study, a traditional estimation method and a frequency-wavenumber method utilizing sub-arrays were investigated using displacement data from numerical simulations, focusing on near-field and ambient noise effects. Detailed procedures for the frequency-wavenumber estimation method are developed based on a study of the primary factors affecting attenuation estimates. The two methods are also evaluated using experimental displacement data obtained from surface wave field measurements with three different arrays.
10

Structure Property Relations and Finite Element Analysis of Ram Horns: A Pathway to Energy Absorbent Bio-Inspired Designs

Trim, M W (Michael Wesley) 06 August 2011 (has links)
A recently emerging engineering design approach entails studying the brilliant design solutions found in nature with an aim to develop design strategies that mimic the remarkable efficiency found in biological systems. This novel engineering approach is referred to as bio-inspired design. In this context, the present study quantifies the structure-property relations in bighorn sheep (Ovis canadensis) horn keratin, qualitatively characterizes the effects of a tapered spiral geometry (the same form as in a ram’s horn) on pressure wave and impulse mitigation, describes the stress attenuation capabilities and features of a ram’s head, and compares the structures and mechanical properties of some energy absorbent natural materials. The results and ideas presented herein can be used in the development of lightweight, energy absorbent, bio-inspired material designs. Among the most notable conclusions garnered from this research include: Horn keratin behaves in an anisotropic manner similar to a long fiber composite. Moisture content dominates the material behavior of horn keratin more than anisotropy, age, and stress-state. This makes moisture content the most influential parameter on the mechanical behavior of horn keratin. Tapered geometries mitigate the impulse generated by a stress wave due to the convergent boundary and a continually decreasing cross sectional area such that greater uniaxial stresses and subsequent axial deformation arises. Furthermore, the tapered geometry introduces small shear stresses that further decrease the impulse. Spiral geometries attenuate the impulse generated by a stress wave by the introduction of shear stresses along the length of the spiral. These shear stresses introduce transverse displacements that function to lessen the impulse. When both a taper and spiral geometry are used in a design, their synergistic effects multiplicatively reduce the impulse Tough natural materials have a high porosity, which makes them light-weight, while increasing their compressive energy absorption ability. Biomaterials whose functions include protection and energy absorption feature a multiscale, hierarchical, composite structure. The constituent materials are arranged in such ways to achieve a synergistic effect, where the properties of the composite exceed the properties of its constituents. Biological materials are therefore not confined to the law of mixtures.

Page generated in 0.5636 seconds