• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Interference mitigation techniques for optical attocell networks

Chen, Zhe January 2017 (has links)
The amount of wireless data traffic has been increasing exponentially. This results in the shortage of radio frequency (RF) spectrum. In order to alleviate the looming spectrum crisis, visible light communication (VLC) has emerged as a supplement to RF techniques. VLC uses light emitting diodes (LEDs) for transmission and employs photodiodes (PDs) for detection. With the advancement of the LED technology, LEDs can now fulfil two functions at the same time: illumination and high-speed wireless communication. In a typical indoor scenario, each single light fixture can act as an access point (AP), and multiple light fixtures in a room can form a cellular wireless network. We refer to this type of networks as ‘optical attocell network’. This thesis focuses on interference mitigation in optical attocell networks. Firstly, the downlink inter-cell interference (ICI) model in optical attocell networks is investigated. The conventional ray-tracing channel model for non-line-of-sight (NLOS) path is studied. Although this model is accurate, it leads to time-consuming computer simulations. In order to reduce the computational complexity, a simplified channel model is proposed to accurately characterise NLOS ICI in optical attocell networks. Using the simplified model, the received signal-to-interference-plus-noise ratio (SINR) distribution in optical attocell networks can be derived in closed-form. This signifies that no Monte Carlo simulation is required to evaluate the user performance in optical attocell networks. Then, with the knowledge of simplified channel model, interference mitigation techniques using angle diversity receivers (ADRs) are investigated in optical attocell networks. An ADR typically consists of multiple PDs with different orientations. By using proper signal combining schemes, ICI in optical attocell networks can be significantly mitigated. Also, a novel double-source cell configuration is proposed. This configuration can further mitigate ICI in optical attocell networks in conjunction with ADRs. Moreover, an analytical framework is proposed to evaluate the user performance in optical attocell networks with ADRs. Finally, optical space division multiple access (SDMA) using angle diversity transmitters is proposed and investigated in optical attocell networks. Optical SDMA can exploit the available bandwidth resource in spatial dimension and mitigate ICI in optical attocell networks. Compared with optical time division multiple access (TDMA), optical SDMA can significantly improve the throughput of optical attocell networks. This improvement scales with the number of LED elements on each angle diversity transmitter. In addition, the upper bound and the lower bound of optical SDMA performance are derived analytically. These bounds can precisely evaluate the performance of optical SDMA systems. Furthermore, optical SDMA is shown to be robust against user position errors, and this makes optical SDMA suitable for practical implementations.
2

Conception et réalisation d’un lien Light-Fidelity multi-utilisateur en intérieur / Conception and realization of an indoor multi-user Light-Fidelity link

Mohammedi Merah, Mounir 08 October 2019 (has links)
De nos jours, le nombre d'appareils connectés nécessitant un accès aux données mobiles est en augmentation constante. L'arrivée d'encore plus d'ojects multimédias connectés et la demande croissante d'informations par appareil ont mis en évidence les limites de la quatrième génération de réseaux cellulaires (4G). Cela a poussé au développement de nouvelles méthodes, dont la 5G. L'objectif est d'être en mesure de prendre en charge la croissance des systèmes portables, des capteurs ou des sysèmes associés à l'internet des objets (IoT). La vision derrière la 5G est de permettre une société entièrement mobile et connectée avec une expérience consistente.Les petites cellules sont la base des normes de communication avancées telles que 4G et maintenant 5G. Ils résultent de l’utilisation de bandes de fréquences plus élevées pour l’accès radiofréquences (RF) afin de supporter de nouvelles normes et exigences croissantes en bande passante. La 5G utilise des ondes millimétriques et nécessite un déploiement dans un environnement urbain intérieur et urbain dense, ce qui peut s'avérer être un défi. C’est là que la 5G devra inclure des solutions de réseau hybrides et pouvoir coexister avec d’autres technologies d’accès sans fil. La communication par lumière visible (VLC) s’inscrit dans ce moule puisque la lumière visible correspond à la bande comprise entre 400 et 800 THz. Le spectre disponible est des milliers de fois plus large que le spectre RF et il n’interfère pas avec celui-ci. Le principe se base sur la combinaison de l'éclairage avec un lien de communication pouvant atteindre des dizaines de gigabits par seconde. Le potentiel est d’offrir un complément à la 5G dans un réseau hybride, offrant une vitesse élevée, aucune interférence et une sécurité accrue au prix d’une couverture limitée et d’une faible maturité technologique.L’objectif de cette thèse est donc de proposer et d’évaluer une implémentation expérimentale d’un système VLC en intérieur et multi-utilisateurs afin de répondre aux objectifs de la configuration light-fidelity (Li-Fi) dans le contexte d’une petite cellule. La première étape de cette étude est un état de l'art détaillé sur le principe de VLC dans la communication sans fil en intérieur et de l’accès multi-utilisateur. Cela permet de mieux expliquer le concept de notre désign et de comparer notre approche aux travaux existants. La deuxième étape consiste en une analyse des principes et des hypothèses pour le système VLC multi-utilisateurs en intérieur portant à la fois sur la technique de modulation et sur les schémas d’accès multi-utilisateurs. Les conclusions tirées des analyses théoriques et numériques servent de base pour la suite du travail. La troisième étape consiste en plusieurs analyses expérimentales sur l'optimisation des performances de diffusion pour un utilisateur unique, puis sur les performances multi-utilisateurs du système à l'aide de divers schémas d'accès. Le débit total avec une LED blanche commerciale atteint 163 Mb/s avec un taux d'erreur réduit d'un facteur de 3,55 grâce au processus d'optimisation des performances. Cette technique a l'avantage d'augmenter la flexibilité pour un scénario avec plusieurs utilisateurs sans augmenter la complexité car seuls les paramètres des filtres de modulation sont altérés. La taille de la cellule obtenue est de 4.56 m² à une distance de 2,15 mètres du transmetteur. Le capacité peut atteindre jusqu'à 40 utilisateurs, ou 40.62 Mb/s dans un scénario à 4 utilisateurs. Il est donc démontré que le système proposé pourrait fonctionner comme une cellule à une distance réaliste, avec un débit de données élevé et la capacité de répondre aux besoins d’un grand nombre d’utilisateurs tout en limitant les coûts de mise en œuvre. / Nowadays, the number of connected devices requiring access to mobile data is considerably increasing. The arrival of even more connected multimedia objects and the growing demand for more information per device highlighted the limits of the fourth generation of broadband cellular networks (4G). This pushed for the development of new methods, one of which is 5G. The goal is to be able to support the growth of wearable, sensors, or related internet-of-object (IoT) systems. The vision behind 5G is to enable a fully mobile and connected society with a consistent experience. In consequence, there is a fundamental need to achieve a seamless and consistent user experience across time and space.Small cells are the basis of advanced communications standards such as 4G and now, 5G. They exist as a result of using higher frequency bands for RF access in order to support new standards and the increasing demands in bandwidth. 5G use millimeter waves and requires a deployment across indoor and dense urban environment which may prove to be a challenge. This is where 5G will need to include hybrid networking solutions and be able to coexist with other wireless access technologies. Visible light communication (VLC) fits into that mold since visible light corresponds to the band between 400 and 800 THz. The available spectrum is multiple thousand times the size of the RF spectrum and it does not interfere with it. The technique combines illumination with communication at possibly tens of gigabits per second. It has the potential to offer a synergistic pairing with 5G in a hybrid network, offering high speed, no interferences, and more security at the cost of limited coverage and low technological maturity.The goal of this thesis is thus to propose and evaluate an experimental implementation of an indoor multi-user VLC system in order to answer the objectives of Li-Fi setup in the context of a small cell. The first step of this study is a detailed state-of-the-art on VLC in indoor wireless communication and multi-user access. It allows the design of our work to be better explained and to compare our approach with existing works. The second step is an analysis of the principles and hypothesis supporting the indoor multi-user VLC system in the study both on the modulation technique and the multi-user access schemes. The conclusions drawn from theoretical and numerical analysis are used as a basis for the rest of the work. The third step is the experimental setup investigations on the single-user broadcast performances optimization and then on the multi-user performances of the system using various schemes. The total throughput using an off-the-shelf white LED reaches 163 Mb/s with a bit-error rate decreased by a factor of 3.55 thanks to the performance optimization process. This technique has the advantage of increasing the flexibility for a multi-access scenario while not augmenting the complexity as it only optimizes the modulation filter parameters. The multi-user access is obtained for a cell size of 4.56 m² at a distance of 2.15 meter away from the transmitter. The user capacity can reach up to 40 users, or 40.62 Mb/s in a 4-user scenario. It is thus demonstrated that the proposed system could function as a cell at a realistic range, with high data rate and the ability to provide for a large amount of users while limiting the cost of implementation.
3

Design and performance analysis of optical attocell networks

Yin, Liang January 2018 (has links)
The exponentially increasing demand for high-speed wireless communications will no longer be satisfied by the traditional radio frequency (RF) in the near future due to its limited spectrum and overutilization. To resolve this imminent issue, industrial and research communities have been looking into alternative technologies for communication. Among them, visible light communication (VLC) has attracted much attention because it utilizes the unlicensed, free and safe spectrum, whose bandwidth is thousand times larger than the entire RF spectrum. Moreover, VLC can be integrated into existing lighting systems to offer a dual-purpose, cost-effective and energy-efficient solution for next-generation small-cell networks (SCNs), giving birth to the concept of optical attocell networks. Most relevant works in the literature rely on system simulations to quantify the performance of attocell networks, which suffer from high computational complexity and provide limited insights about the network. Mathematical tools, on the other hand, are more tractable and scalable and are shown to closely approximate practical systems. The presented work utilizes stochastic geometry for downlink evaluation of optical attocell networks, where the co-channel interference (CCI) surpasses noise and becomes the limiting factor of the link throughput. By studying the moment generating function (MGF) of the aggregate interference, a theoretical framework for modeling the distribution of signal-to-interference-plus-noise ratio (SINR) is presented, which allows important performance metrics such as the coverage probability and link throughput to be derived. Depending on the source of interference, CCI can be classified into two categories: inter-cell interference (ICI) and intra-cell interference. In this work, both types of interference are characterized, based on which effective interference mitigation techniques such as the coordinated multipoint (CoMP), power-domain multiplexing and successive interference cancellation (SIC) are devised. The proposed mathematical framework is applicable to attocell networks with and without such interference mitigation techniques. Compared to RF networks, optical attocell networks are inherently more secure in the physical layer because visible light does not penetrate through opaque walls. This work analytically quantifies the physical-layer security of attocell networks from an information-theoretic point of view. Secrecy enhancement techniques such as AP cooperation and eavesdropper-free protected zones are also discussed. It is shown that compared to AP cooperation, implementing secrecy protected zones is more effective and it can contribute significantly to the network security.

Page generated in 0.0448 seconds