Spelling suggestions: "subject:"attwater’s prairie chicken"" "subject:"attwateri’s prairie chicken""
1 |
Cloacal Microbiota of Captive-bred and Wild Attwater’s Prairie-chicken, Tympanuchus Cupido AttwateriSimon, Stephanie E. 08 1900 (has links)
The Attwater’s prairie-chicken (Tympanuchus cupido attwateri; APC) is a species of grouse native to Texas coastal prairies and is on the critically endangered species list as a result of habitat destruction and overhunting. All of the current populations were captively bred and released into the wild. Survivorship for released APCs is very low, and individuals seldom survive to reproduce in the wild. One factor contributing to this may be an alteration in the gut microbiota as a result of captivity. Factors potentially influencing the gut microbial composition in captivity include antibiotic therapy, stress, and a predominantly commercially formulated diet. Recent studies have begun to shed light on the importance of the host microbial endosymbionts. Antibiotic administration, stress, diet, age, genotype and other factors have been shown to influence microbial populations in the gastrointestinal tracts of many different vertebrates. Sequencing of 16S rRNA gene amplicons on the Ion Torrent™ platform was used in this study to identify groups of bacteria in the cloacas as a surrogate for the gut microbiota in the APC. Antibiotic-treated and untreated birds, wild-hatched and captive-bred birds, and individuals sampled before and after release to the wild were examined. Significant differences were found between wild-hatched and captive raised birds both pre- and post release. In addition, there was extensive variation among the populations at the lower taxonomic ranks between individuals for each group of APCs. Principal coordinate analysis based on the weighted UniFrac distance metric further exhibited some clustering of individuals by treatment. These data suggest that captive breeding may have long-term effects on the cloacal microbiota of APCs with unknown consequences to their long-term health and survivorship.
|
2 |
The Effects of Inbreeding on Fitness Traits in the Critically Endangered Attwater’s Prairie-chickenHammerly, Susan C. 08 1900 (has links)
The goals of captive breeding programs for endangered species include preserving genetic diversity and avoiding inbreeding. Typically this is accomplished by minimizing population mean kinship; however, this approach becomes less effective when errors in the pedigree exist and may result in inbreeding depression, or reduced survival. Here, both pedigree- and DNA-based methods were used to assess inbreeding depression in the critically endangered Attwater’s prairie-chicken (Tympanuchus cupido attwateri). Less variation in the pedigree-based inbreeding coefficients and parental relatedness values were observed compared to DNA-based measures suggesting that errors exist in the pedigree. Further, chicks identified with high parental DNA-based relatedness exhibited decreased survival at both 14- and 50-days post-hatch. A similar pattern was observed in later life stages (> 50 days post-hatch) with birds released to the wild; however, the pattern varied depending on the time post-release. While DNA-based inbreeding coefficient was positively correlated with mortality to one month post-release, an opposite pattern was observed at nine months suggesting purging of deleterious alleles. I also investigated whether immunocompetence, or the ability to produce a normal immune response, was correlated with survival; however, no significant correlation was observed suggesting that inbreeding was a more important factor influencing survival. Pairing individuals for breeding by minimizing DNA-based parental relatedness values resulted in a significant increase in chick survival. This study highlights the importance of using DNA-based methods to avoid inbreeding depression when errors exist in the pedigree.
|
Page generated in 0.0673 seconds