• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

NeuroFSM: aprendizado de Autômatos Finitos através do uso de Redes Neurais Artificiais aplicadas à robôs móveis e veículos autônomos / NeuroFSM: finite state machines learning using artificial neural networks applied to mobile robots and autonomous vehicles

Sales, Daniel Oliva 23 July 2012 (has links)
A navegação autônoma é uma tarefa fundamental na robótica móvel. Para que esta tarefa seja realizada corretamente é necessário um sistema inteligente de controle e navegação associado ao sistema sensorial. Este projeto apresenta o desenvolvimento de um sistema de controle para a navegação de veículos e robôs móveis autônomos. A abordagem utilizada neste trabalho utiliza Redes Neurais Artificiais para o aprendizado de Autômatos Finitos de forma que os robôs possam lidar com os dados provenientes de seus sensores mesmo estando sujeitos a imprecisões e erros e ao mesmo tempo permite que sejam consideradas as diferentes situações e estados em que estes robôs se encontram (contexto). Dessa forma, é possível decidir como agir para realizar o controle da sua movimentação, e assim executar tarefas de controle e navegação das mais simples até as mais complexas e de alto nível. Portanto, esta dissertação visa utilizar Redes Neurais Artificiais para reconhecer o estado atual (contexto) do robô em relação ao ambiente em que está inserido. Uma vez que seja identificado seu estado, o que pode inclusive incluir a identificação de sua posição em relação aos elementos presentes no ambiente, o robô será capaz de decidir qual a ação/comportamento que deverá ser executado. O sistema de controle e navegação irá implementar um Autômato Finito que a partir de um estado atual define uma ação corrente, sendo capaz de identificar a mudança de estados, e assim alternar entre diferentes comportamentos previamente definidos. De modo a validar esta proposta, diversos experimentos foram realizados através do uso de um simulador robótico (Player-Stage), e através de testes realizados com robôs reais (Pioneer P3-AT, SRV-1 e veículos automatizados) / Autonomous navigation is a fundamental task in mobile robotics. In order to accurately perform this task it is necessary an intelligent navigation and control system associated to the sensorial system. This project presents the development of a control system for autonomous mobile robots and vehicles navigation. The adopted approach uses Artificial Neural Networks for Finite State Machine learning, allowing the robots to deal with sensorial data even when this data is not precise and correct. Simultaneously, it allows the robots to consider the different situations and states they are inserted in (context detection). This way, it is possible to decide how to proceed with motion control and then execute navigation and control tasks from the most simple ones until the most complex and high level tasks. So, this work uses Artificial Neural Networks to recognize the robots current state (context) at the environment where it is inserted. Once the state is detected, including identification of robots position according to environment elements, the robot will be able to determine the action/- behavior to be executed. The navigation and control system implements a Finite State Machine deciding the current action from current state, being able to identify state changes, alternating between different previously defined behaviors. In order to validade this approach, many experiments were performed with the use of a robotic simulator (Player-Stage), and carrying out tests with real robots (Pioneer P3-AT, SRV-1 and autonomous vehicles)
2

NeuroFSM: aprendizado de Autômatos Finitos através do uso de Redes Neurais Artificiais aplicadas à robôs móveis e veículos autônomos / NeuroFSM: finite state machines learning using artificial neural networks applied to mobile robots and autonomous vehicles

Daniel Oliva Sales 23 July 2012 (has links)
A navegação autônoma é uma tarefa fundamental na robótica móvel. Para que esta tarefa seja realizada corretamente é necessário um sistema inteligente de controle e navegação associado ao sistema sensorial. Este projeto apresenta o desenvolvimento de um sistema de controle para a navegação de veículos e robôs móveis autônomos. A abordagem utilizada neste trabalho utiliza Redes Neurais Artificiais para o aprendizado de Autômatos Finitos de forma que os robôs possam lidar com os dados provenientes de seus sensores mesmo estando sujeitos a imprecisões e erros e ao mesmo tempo permite que sejam consideradas as diferentes situações e estados em que estes robôs se encontram (contexto). Dessa forma, é possível decidir como agir para realizar o controle da sua movimentação, e assim executar tarefas de controle e navegação das mais simples até as mais complexas e de alto nível. Portanto, esta dissertação visa utilizar Redes Neurais Artificiais para reconhecer o estado atual (contexto) do robô em relação ao ambiente em que está inserido. Uma vez que seja identificado seu estado, o que pode inclusive incluir a identificação de sua posição em relação aos elementos presentes no ambiente, o robô será capaz de decidir qual a ação/comportamento que deverá ser executado. O sistema de controle e navegação irá implementar um Autômato Finito que a partir de um estado atual define uma ação corrente, sendo capaz de identificar a mudança de estados, e assim alternar entre diferentes comportamentos previamente definidos. De modo a validar esta proposta, diversos experimentos foram realizados através do uso de um simulador robótico (Player-Stage), e através de testes realizados com robôs reais (Pioneer P3-AT, SRV-1 e veículos automatizados) / Autonomous navigation is a fundamental task in mobile robotics. In order to accurately perform this task it is necessary an intelligent navigation and control system associated to the sensorial system. This project presents the development of a control system for autonomous mobile robots and vehicles navigation. The adopted approach uses Artificial Neural Networks for Finite State Machine learning, allowing the robots to deal with sensorial data even when this data is not precise and correct. Simultaneously, it allows the robots to consider the different situations and states they are inserted in (context detection). This way, it is possible to decide how to proceed with motion control and then execute navigation and control tasks from the most simple ones until the most complex and high level tasks. So, this work uses Artificial Neural Networks to recognize the robots current state (context) at the environment where it is inserted. Once the state is detected, including identification of robots position according to environment elements, the robot will be able to determine the action/- behavior to be executed. The navigation and control system implements a Finite State Machine deciding the current action from current state, being able to identify state changes, alternating between different previously defined behaviors. In order to validade this approach, many experiments were performed with the use of a robotic simulator (Player-Stage), and carrying out tests with real robots (Pioneer P3-AT, SRV-1 and autonomous vehicles)

Page generated in 0.0593 seconds