• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • No language data
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Development of a Control Moment Gyroscope controlled, three axis satellite simulator, with active balancing for the bifocal relay mirror initiative

Kulick, Wayne J. 12 1900 (has links)
Approved for public release; distribution in unlimited. / This thesis develops and implements a Control Moment Gyroscope (CMG) steering law, controller and active balancing system for a three-axis satellite simulator (TASS). The CMGs are configured in a typical pyramid configuration (the fourth CMG position being null). The development was done primarily with simulation and experiments utilizing Real Time Workshop and XPC Target of MATLAB and SIMULINK. The TASS is a double circular platform mounted on a spherical air bearing with the center of rotation (CR) about the approximate physical geometric center of the simulator. The TASS utilizes three moveable masses in the three body axes for balancing which actively eliminate any center of gravity (CG) offset and return the CG to the CR. The TASS supports an optics payload designed to acquire, track and point a received laser beam onto an off-satellite target. The target may be stationary or moving. Actively balancing the TASS reduces the torque output requirement for the CMGs while maintaining either a stabilized level platform or a particular commanded attitude. Reduction or elimination of torque output from the CMGs results in a more stabilized platform, less structural induced vibration, less jitter in payload optics and less power required in spacecraft applications. / Lieutenant Commander, United States Navy

Page generated in 0.0735 seconds