• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Foreground Segmentation of Moving Objects

Molin, Joel January 2010 (has links)
<p>Foreground segmentation is a common first step in tracking and surveillance applications.  The purpose of foreground segmentation is to provide later stages of image processing with an indication of where interesting data can be found.  This thesis is an investigation of how foreground segmentation can be performed in two contexts: as a pre-step to trajectory tracking and as a pre-step in indoor surveillance applications.</p><p>Three methods are selected and detailed: a single Gaussian method, a Gaussian mixture model method, and a codebook method.  Experiments are then performed on typical input video using the methods.  It is concluded that the Gaussian mixture model produces the output which yields the best trajectories when used as input to the trajectory tracker.  An extension is proposed to the Gaussian mixture model which reduces shadow, improving the performance of foreground segmentation in the surveillance context.</p>
2

Foreground Segmentation of Moving Objects

Molin, Joel January 2010 (has links)
Foreground segmentation is a common first step in tracking and surveillance applications.  The purpose of foreground segmentation is to provide later stages of image processing with an indication of where interesting data can be found.  This thesis is an investigation of how foreground segmentation can be performed in two contexts: as a pre-step to trajectory tracking and as a pre-step in indoor surveillance applications. Three methods are selected and detailed: a single Gaussian method, a Gaussian mixture model method, and a codebook method.  Experiments are then performed on typical input video using the methods.  It is concluded that the Gaussian mixture model produces the output which yields the best trajectories when used as input to the trajectory tracker.  An extension is proposed to the Gaussian mixture model which reduces shadow, improving the performance of foreground segmentation in the surveillance context.

Page generated in 0.0577 seconds