• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

A video descriptor using orientation tensors and shape-based trajectory clustering

Caetano, Felipe Andrade 29 August 2014 (has links)
Submitted by Renata Lopes (renatasil82@gmail.com) on 2017-06-06T17:54:07Z No. of bitstreams: 1 felipeandradecaetano.pdf: 7461489 bytes, checksum: 93cea870d7bf162be4786d1d6ffb2ec9 (MD5) / Approved for entry into archive by Adriana Oliveira (adriana.oliveira@ufjf.edu.br) on 2017-06-07T11:06:08Z (GMT) No. of bitstreams: 1 felipeandradecaetano.pdf: 7461489 bytes, checksum: 93cea870d7bf162be4786d1d6ffb2ec9 (MD5) / Made available in DSpace on 2017-06-07T11:06:08Z (GMT). No. of bitstreams: 1 felipeandradecaetano.pdf: 7461489 bytes, checksum: 93cea870d7bf162be4786d1d6ffb2ec9 (MD5) Previous issue date: 2014-08-29 / Trajetórias densas têm se mostrado um método extremamente promissor na área de reconhecimento de ações humanas. Baseado nisso, propomos um novo tipo de descritor de vídeos, calculado a partir da relação do fluxo ótico que compõe a trajetória com o gradiente de sua vizinhança e sua localidade espaço-temporal. Tensores de orientação são usados para acumular informação relevante ao longo do vídeo, representando tendências de direção do descritor para aquele tipo de movimento. Além disso, um método para aglomerar trajetórias usando o seu formato como métrica é proposto. Isso permite acu- mular características de movimentos distintos em tensores separados e diferenciar com maior facilidade trajetórias que são criadas por movimentos reais das que são geradas a partir do movimento de câmera. O método proposto foi capaz de atingir os melhores níveis de reconhecimento conhecidos para métodos com a restrição de métodos autodescritores em bases populares — Hollywood2 (Acima de 46%) e KTH (Acima de 94%). / Dense trajectories has been shown as a very promising method in the human action recognition area. Based on that, we propose a new kind of video descriptor, calculated from the relationship between the trajectory’s optical flow with the gradient field in its neighborhood and its spatio-temporal location. Orientation tensors are used to accumulate relevant information over the video, representing the tendency of direction for that kind of movement. Furthermore, a method to cluster trajectories using their shape is proposed. This allow us to accumulate different motion patterns in different tensors and easier distinguish trajectories that are created by real movements from the trajectories generated by the camera’s movement. The proposed method is capable to achieve the best known recognition rates for methods based on the self-descriptor constraint in popular datasets — Hollywood2 (up to 46%) and KTH (up to 94%).
2

A video self-descriptor based on sparse trajectory clustering

Figueiredo, Ana Mara de Oliveira 10 September 2015 (has links)
Submitted by Renata Lopes (renatasil82@gmail.com) on 2017-05-30T17:44:26Z No. of bitstreams: 1 anamaradeoliveirafigueiredo.pdf: 5190215 bytes, checksum: f9ec4e5f37ac1ca446fcef9ac91c1fb5 (MD5) / Approved for entry into archive by Adriana Oliveira (adriana.oliveira@ufjf.edu.br) on 2017-06-01T11:48:59Z (GMT) No. of bitstreams: 1 anamaradeoliveirafigueiredo.pdf: 5190215 bytes, checksum: f9ec4e5f37ac1ca446fcef9ac91c1fb5 (MD5) / Made available in DSpace on 2017-06-01T11:48:59Z (GMT). No. of bitstreams: 1 anamaradeoliveirafigueiredo.pdf: 5190215 bytes, checksum: f9ec4e5f37ac1ca446fcef9ac91c1fb5 (MD5) Previous issue date: 2015-09-10 / CAPES - Coordenação de Aperfeiçoamento de Pessoal de Nível Superior / O reconhecimento de ações humanas é um problema desafiador em visão computacional que tem potenciais áreas de aplicações. Para descrever o principal movimento do vídeo um novo descritor de movimento é proposto neste trabalho. Este trabalho combina dois métodos para estimar o movimento entre as imagens: casamento de blocos e de gradiente de intensidade de brilho da imagem. Neste trabalho usa-se um algoritmo de casamento de blocos de tamanho variável para extrair vetores de deslocamento, os quais contém a informação de movimento. Estes vetores são computados em uma sequência de frames obtendo a trajetória do bloco, que possui a informação temporal. Os vetores obtidos através do casamento de blocos são usados para clusterizar as trajetórias esparsas de acordo com a forma. O método proposto computa essa informação para obter tensores de orientação e gerar o descritor final. Este descritor é chamado de autodescritor porque depende apenas do vídeo de entrada. O tensor usado como descritor global é avaliado através da classificação dos vídeos das bases de dados KTH, UCF11 e Hollywood2 com o classificador não linear SVM. Os resultados indicam que este método de trajetórias esparsas é competitivo comparado ao já conhecido método de trajetórias densas, usando tensores de orientação, além de requerer menos esforço computacional. / Human action recognition is a challenging problem in Computer Vision which has many potential applications. In order to describe the main movement of the video a new motion descriptor is proposed in this work. We combine two methods for estimating the motion between frames: block matching and brightness gradient of image. In this work we use a variable size block matching algorithm to extract displacement vectors as a motion information. The cross product between the block matching vector and the gra dient is used to obtain the displacement vectors. These vectors are computed in a frame sequence, obtaining the block trajectory which contains the temporal information. The block matching vectors are also used to cluster the sparse trajectories according to their shape. The proposed method computes this information to obtain orientation tensors and to generate the final descriptor. It is called self-descriptor because it depends only on the input video. The global tensor descriptor is evaluated by classification of KTH, UCF11 and Hollywood2 video datasets with a non-linear SVM classifier. Results indicate that our sparse trajectories method is competitive in comparison to the well known dense tra jectories approach, using orientation tensors, besides requiring less computational effort.

Page generated in 0.05 seconds