• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • Tagged with
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Automated Simulation of Organic Photovoltaic Solar Cells / Analytical Tool for Organic Photovoltaic Solar Cells

Pendyala, Raghu Kishore January 2008 (has links)
This project is an extension of a pre-existing simulation program (‘Simulation_2dioden’). This simulation program was first developed in Konarka Technologies. The main purpose of the project ‘Simulation_2dioden’ is to calibrate the values of different parameters like, Shunt resistance, Series resistance, Ideality factor, Diode current, epsilon, tau, contact probability, AbsCT, intensity, etc; This is one of the curve fitting procedure’s. This calibration is done by using different equations. Diode equation is one of the main equation’s used in calculating different currents and voltages, from the values generated by diode equation all the other parameters are calculated. The reason for designing this simulation_2dioden is to calculate the values of different parameters of a device and the researcher would know which parameter effects more in the device efficiency, accordingly they change the composition of the materials used in the device to acquire a better efficiency. The platform used to design this project is ‘Microsoft Excel’, and the tool used to design the program is ‘Visual basics’. The program could be otherwise called as a ‘Virtual Solar cell’. The whole Virtual Solar cell is programmed in a single excel sheet. An Automated working solution is suggested which could save a lot of time for the researchers, which is the main aim of this project. To calibrate the parameter values, one has to load the J-V characteristics and simulate the program by just clicking one button. And the parameters extracted by using this automated simulation are Parallel resistance, Series resistance, Diode ideality, Saturation current, Contact properties, and Charge carrier mobility. Finally, a basic working solution has been initiated by automating the simulation program for calibrating the parameter values.
2

Automated Simulation of Organic Photovoltaic Solar Cells / Analytical Tool for Organic Photovoltaic Solar Cells

Pendyala, Raghu Kishore January 2008 (has links)
<p>This project is an extension of a pre-existing simulation program (‘Simulation_2dioden’). This simulation program was first developed in Konarka Technologies. The main purpose of the project ‘Simulation_2dioden’ is to calibrate the values of different parameters like, Shunt resistance, Series resistance, Ideality factor, Diode current, epsilon, tau, contact probability, AbsCT, intensity, etc; This is one of the curve fitting procedure’s. This calibration is done by using different equations. Diode equation is one of the main equation’s used in calculating different currents and voltages, from the values generated by diode equation all the other parameters are calculated.</p><p>The reason for designing this simulation_2dioden is to calculate the values of different parameters of a device and the researcher would know which parameter effects more in the device efficiency, accordingly they change the composition of the materials used in the device to acquire a better efficiency. The platform used to design this project is ‘Microsoft Excel’, and the tool used to design the program is ‘Visual basics’. The program could be otherwise called as a ‘Virtual Solar cell’. The whole Virtual Solar cell is programmed in a single excel sheet.</p><p>An Automated working solution is suggested which could save a lot of time for the researchers, which is the main aim of this project. To calibrate the parameter values, one has to load the J-V characteristics and simulate the program by just clicking one button. And the parameters extracted by using this automated simulation are Parallel resistance, Series resistance, Diode ideality, Saturation current, Contact properties, and Charge carrier mobility.</p><p>Finally, a basic working solution has been initiated by automating the simulation program for calibrating the parameter values.</p>
3

Projektuojamo laivo eigumo praktinio vertinimo galimybių tyrimas / Ship powering practical assessment of feasibility study on design stage

Šilov, Andrej 26 June 2013 (has links)
Darbe analizuojami laivo pasipriešinimo nustatymo būdai, metodai. Aprašomas praktiškai atliktas karinio laivo 5415 pasipriešinimo modelinis bandymas, bei pateikiami bandymo rezultatai. Naudojantis FLOW 3D simuliacine programa modeliuojamas virtualus laivo 5414 pasipriešinimo bandymas, bei pateikiami virtualaus bandymo rezultatai. Taikant daţnai naudojamus praktikoje apytikrius vandens pasipriešinimo skaičiavimo metodus vertinamas vandens pasipriešinimas laivo 5415 judėjimui. Palyginami apytikrių skaičiavimo metodų, bei realaus ir virtualaus pasipriešinimo eksperimentų rezultatai. Padaromos išvados, kaip tikslingai parinkti optimalų laivo eigumo preliminaraus vertinimo metodą laivo projektavimo metu. / The most used ship's resistance research techniques and methods were analyzed in current work. Were described war ship 5415 practical resistance modeling test and submitted test calculations. Using automation simulation program FLOW 3D were created a virtual ship resistance test and also submitted test calculations. Using approximate water resistance calculation methods was evaluated water resistance of the vessel 5415. Were compared the result of approximate resistance calculation method's, real and virtual resistance test experiment's. Were made conclusions, how to select the most optimal ship powering preliminary assessment method on the design stage.

Page generated in 0.1225 seconds