• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • 3
  • Tagged with
  • 7
  • 7
  • 5
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Subwords : automata, embedding problems, and verification / Sous-mots : automates, problèmes de plongement, et vérification

Karandikar, Prateek 12 February 2015 (has links)
Garantir le fonctionnement correct des systèmes informatisés est un enjeu chaque jour plus important. La vérification formelle est un ensemble de techniquespermettant d’établir la correction d’un modèle mathématique du système par rapport à des propriétés exprimées dans un langage formel.Le "Regular model checking" est une technique bien connuede vérification de systèmes infinis. Elle manipule des ensembles infinis de configurations représentés de façon symbolique. Le "Regular model checking" de systèmes à canaux non fiables (LCS) soulève des questions fondamentales de décision et de complexité concernant l’ordre sous-mot qui modélise la perte de messages. Nous abordons ces questions et résolvons un problème ouvert sur l’index de la congruence de Simon pour les langages testables par morceaux.L’accessibilité pour les LCS est décidable mais de complexité F_{omega^omega} très élevée, bien au delà des complexités primitives récursives. Plusieurs problèmes de complexité équivalente ont été découverts récemment, par exemple dans la vérification de mémoire faibles ou de logique temporelle métrique. Le problème de plongement de Post (PEP) est une abstraction de l’accessibilité des LCS, lui aussi de complexité F_{omega^omega}, et qui nous sert de base dans la définition d’une classe de complexité correspondante. Nous proposons une généralisation commune aux deux variantes existantes de PEP et donnons une preuve de décidabilité simplifiée. Ceci permet d’étendre le modèle des systèmes à canaux unidirectionnels (UCS) par des tests simples tout en préservant la décidabilité de l’accessibilité. / The increasing use of software and automated systems has made it important to ensure their correct behaviour. Formal verification is the technique that establishes correctness of a system or a mathematical model of the system with respect to properties expressed in a formal language.Regular model checking is a common technique for verification of infinite-state systems - it represents infinite sets of configurations symbolically in a finite manner and manipulates them using these representations. Regular model checking for lossy channel systems brings up basic automata-theoretic questions concerning the subword relation on words which models the lossiness of the channels. We address these state complexity and decision problems, and also solve a long-standing problem involving the index of the Simon's piecewise-testability congruence.The reachability problem for lossy channel systems (LCS), though decidable, has very high F_{omega^omega} complexity, well beyond primitive-recursive. In recent times several problems with this complexity have been discovered, for example in the fields of verification of weak memory models and metric temporal logic. The Post Embedding Problem (PEP) is an algebraic abstraction of the reachability problem on LCS, with the same complexity, and is our champion for a "master" problem for the class F_{omega^omega}. We provide a common generalization of two known variants of PEP and give a simpler proof of decidability. This allows us to extend the unidirectional channel system (UCS) model with simple channel tests while having decidable reachability.
2

Vers la vérification de propriétés de sûreté pour des systèmes infinis communicants : décidabilité et raffinement des abstractions

Heussner, Alexander 27 June 2011 (has links)
La vérification de propriétés de sûreté des logiciels distribués basés sur des canaux fifo non bornés et fiables mène directement au model checking de systèmes infinis. Nous introduisons la famille des (q)ueueing (c)oncurrent (p)rocesses (QCP) composant des systèmes de transitions locaux, par exemple des automates finis/à pile, qui communiquent entre eux par des files fifo. Le problème d'atteignabilité des états de contrôle est indécidable pour des automates communicants et des automates à plusieurs piles, et par conséquent pour QCP.Nous présentons deux solutions pour contourner ce résultat négatif :Primo, une sur-approximation basée sur l'approche abstraire-tester-raffiner qui s'appuie sur notre nouveau concept de raffinement par chemin. Cette approche mène à permettre d'écrire un semi-algorithme du type CEGAR qui est implémenté avec des QDD et réalisé dans le framework McScM dont le banc d'essai conclut notre présentation.Secundo, nous proposons des restrictions pour les QCP à des piles locales pour démêler l'interaction causale entre les données locales (la pile), et la synchronisation globale. Nous montrons qu'en supposant qu'il existe une borne existentielle sur les exécutions et qu'en ajoutant une condition sur l'architecture, qui entrave la synchronisation de deux piles, on arrive à une réponse positive pour le problème de décidabilité de l'atteignabilité qui est EXPTime-complet (et qui généralise des résultats déjà connus). La construction de base repose sur une simulation du système par un automate à une pile équivalent du point de vue de l'atteignabilité --- sous-jacente, nos deux restrictions restreignent les exécutions à une forme hors-contexte. Nous montrons aussi que ces contraintes apparaissent souvent dans des situations ``concrètes''et qu'elles sont moins restrictives que celles actuellement connues. Une autre possibilité pour arriver à une solution pratiquement utilisable consiste à supposer une borne du problème de décidabilité : nous montrons que l'atteignabilité par un nombre borné de phases est décidable par un algorithme constructif qui est 2EXPTime-complet.Finalement, nous montrons qu'élargir les résultats positifs ci-dessus à la vérification de la logique linéaire temporelle demande soit de sacrifier l'expressivité de la logique soit d'ajouter des restrictions assez fortes aux QCP --- deux restrictions qui rendent cette approche inutilisable en pratique. En réutilisant notre argument de type ``hors-contexte'', nous représentons l'ordre partiel sous-jacent aux exécutions par des grammaires hypergraphes. Cela nous permet de bénéficier de résultats connus concertant le model checking des formules de la logique MSO sur les graphes (avec largeur arborescente bornée), et d'arriver aux premiers résultats concernant la vérification des propriétés sur l'ordre partiel des automates (à pile) communicants. / The safety verification of distributed programs, that are based on reliable, unbounded fifo communication, leads in a straight line to model checking of infinite state systems. We introduce the family of (q)ueueing (c)oncurrent (p)rocesses (QCP): local transition systems, e.g., (pushdown-)automata, that are globally communicating over fifo channels. QCP inherits thus the known negative answers to the control-state reachability question from its members, above all from communicating automata and multi-stack pushdown systems. A feasible resolution of this question is, however, the corner stone for safety verification.We present two solutions to this intricacy: first, an over-approximation in the form of an abstract-check-refine algorithm on top of our novel notion of path invariant based refinement. This leads to a \cegar semi-algorithm that is implemented with the help of QDD and realized in a small software framework (McScM); the latter is benchmarked on a series ofsmall example protocols. Second, we propose restrictions for QCP with local pushdowns that untangle the causal interaction of local data, i.e., thestack, and global synchronization. We prove that an existential boundedness condition on runs together with an architectural restriction, that impedes the synchronization of two pushdowns, is sufficient and leads to an EXPTime-complete decision procedure (thus subsuming and generalizing known results). The underlying construction relies on a control-state reachability equivalent simulation on a single pushdown automaton, i.e., the context-freeness of the runs under the previous restrictions. We can demonstrate that our constraints arise ``naturally'' in certain classes of practical situations and are less restrictive than currently known ones. Another possibility to gain a practicable solution to safety verification involves limiting the decision question itself: we show that bounded phase reachability is decidable by a constructive algorithms in 2ExpTime, which is complete.Finally, trying to directly extend the previous positive results to model checking of linear temporal logic is not possible withouteither sacrificing expressivity or adding strong restrictions (i.e., that are not usable in practice). However, we can lift our context-freeness argument via hyperedge replacement grammars to graph-like representation of the partial order underlying each run of a QCP. Thus, we can directly apply the well-known results on MSO model checking on graphs (of bounded treewidth) to our setting and derive first results on verifying partial order properties on communicating (pushdown-) automata.
3

Allocation de fonctions de commande de systèmes critiques par recherche d'atteignabilité dans un réseau d'automates communicants / Mapping of control functions of critical systems by reachability analysis in a network of communicating automata

Lemattre, Thibault 09 July 2013 (has links)
La conception d'architectures opérationnelles d'un système de contrôle-commande est une phase très importante lors de la conception de systèmes de production d'énergie. Cette phase consiste à projeter l'architecture fonctionnelle sur l'architecture organique tout en respectant des contraintes de capacité et de sûreté, c'est-à-dire à allouer les fonctions de commande à un ensemble de contrôleurs tout en respectant ces contraintes. Les travaux présentés dans cette thèse proposent : i)une formalisation des données et contraintes du problème d'allocation de fonctions - ii)une méthode d'allocation, par recherche d'atteignabilité, basée sur un mécanisme d'appel/réponse dans un réseau d'automates communicants à variables entières - iii)la comparaison de cette méthode à une méthode de résolution par programmation linéaire en nombres entiers. Les résultats de ces travaux ont été validés sur des exemples de taille réelle et ouvrent la voie à des couplages entre recherche d'atteignabilité et programmation linéaire en nombres entiers pour la résolution de problèmes de satisfaction de systèmes de contraintes non linéaires. / The design of operational control architectures is a very important step of the design of energy production systems. This step consists in mapping the functional architecture of the system onto its hardware architecture while respecting capacity and safety constraints, i.e. in allocating control functions to a set of controllers while respecting these constraints. The work presented in this thesis presents: i) a formalization of the data and constraints of the function allocation problem- ii) a mapping method, by reachability analysis, based on a request/response mechanism in a network of communicating automata with integer variables- iii) a comparison between this method and a resolution method by integer linear programming. The results of this work have been validated on examples of actual size and open the way to the coupling between reachability analysis and integer linear programming for the resolution of satisfaction problems for non-linear constraint systems.
4

Sur la vérification de systèmes infinis

Habermehl, Peter 27 January 1998 (has links) (PDF)
Cette thèse traite du problème de la vérification de systèmes ayant un nombre infini d'états. Ces systèmes peuvent être décrits par plusieurs formalismes tels que des algèbres de processus ou des automates finis munis de structures de données non-bornées (automates à pile, réseaux de Petri ou systèmes à files). Dans une première partie de la thèse nous nous intéressons à la caractérisation de classes de systèmes infinis et de propriétés pour lesquels le problème de vérification est décidable. Nous considérons d'abord la complexité de la vérification du mu-calcul linéaire pour les réseaux de Petri. Ensuite, nous définissons des logiques temporelles qui permettent d'exprimer des propriétés non-régulières comportant des contraintes linéaires sur le nombre d'occurrences d'événements. Ces logiques sont plus expressives que les logiques utilisées dans le domaine. Nous montrons en particulier que le problème de la vérification d'une logique qui est plus expressive que le mu-calcul linéaire est décidable pour des classes de systèmes infinis telles que les automates à pile et les réseaux de Petri. Une deuxième partie de la thèse est consacrée aux systèmes communicant par files d'attente, dont le problème de vérification est en général indécidable. Nous appliquons le principe de l'analyse symbolique à ces systèmes. Nous proposons des structures finies qui permettent de représenter et de manipuler des ensembles infinis de configurations de tels systèmes. Ces structures permettent de calculer l'effet exact d'une exécution répétée de tout circuit dans le graphe de transitions du système. Ainsi, chaque circuit peut être considéré comme une nouvelle "transition" du système. Nous utilisons ce résultat pour accélérer le calcul de l'ensemble des configurations atteignables d'un système afin d'augmenter les chances de terminaison de ce calcul.
5

Réduction paramétrée de spécifications formées d'automates communicants : algorithmes polynomiaux pour la réduction de modèles

Labbé, Sébastien 26 September 2007 (has links) (PDF)
Les travaux décrits dans ce manuscrit de thèse s'inscrivent dans le cadre des méthodes formelles pour les langages de spécifications formées d'automates communicants. Ce type de langage est largement utilisé dans les industries de pointe où le niveau de fiabilité requis est élevé (e.g. aéronautique, transports), car ils permettent d'améliorer la précision des spécifications et d'exploiter des outils de simulation, de test ou de vérification qui contribuent à la validation des spécifications. Un frein au passage à l'échelle industrielle de ces méthodes formelles est connu sous le nom de l'explosion combinatoire, qui est due à la fois à la manipulation de larges domaines numériques, et au parallélisme intrinsèque aux spécifications.<br />L'idée que nous proposons consiste à contourner ce phénomène en appliquant des techniques de réduction paramétrée, pouvant être désignées sous le terme anglo-saxon "slicing'', en amont d'une analyse complexe. Cette analyse peut ainsi être effectuée a posteriori sur une spécification réduite, donc potentiellement moins sujette à l'explosion combinatoire. Notre méthode de réduction paramétrée est basée sur des relations de dépendances dans la spécification sous analyse, et est fondée principalement sur les travaux effectués par les communautés de la compilation et du slicing de programmes. Dans cette thèse nous établissons un cadre théorique pour les analyses statiques de spécifications formées d'automates communicants, dans lequel nous définissons formellement les relations de dépendances mentionnées ci-dessus, ainsi que le concept de "tranche" de spécification par rapport à un "critère" de réduction. Ensuite, nous décrivons et démontrons les algorithmes efficaces que nous avons mis au point pour calculer les relations de dépendances et les tranches de spécifications, et enfin nous décrivons notre mise en oeuvre de ces algorithmes dans l'outil "Carver", pour la réduction paramétrée de spécifications formées d'automates communicants.
6

Allocation de fonctions de commande de systèmes critiques par recherche d'atteignabilité dans un réseau d'automates communicants

Lemattre, Thibault 09 July 2013 (has links) (PDF)
La conception d'architectures opérationnelles d'un système de contrôle-commande est une phase très importante lors de la conception de systèmes de production d'énergie. Cette phase consiste à projeter l'architecture fonctionnelle sur l'architecture organique tout en respectant des contraintes de capacité et de sûreté, c'est-à-dire à allouer les fonctions de commande à un ensemble de contrôleurs tout en respectant ces contraintes. Les travaux présentés dans cette thèse proposent : i)une formalisation des données et contraintes du problème d'allocation de fonctions - ii)une méthode d'allocation, par recherche d'atteignabilité, basée sur un mécanisme d'appel/réponse dans un réseau d'automates communicants à variables entières - iii)la comparaison de cette méthode à une méthode de résolution par programmation linéaire en nombres entiers. Les résultats de ces travaux ont été validés sur des exemples de taille réelle et ouvrent la voie à des couplages entre recherche d'atteignabilité et programmation linéaire en nombres entiers pour la résolution de problèmes de satisfaction de systèmes de contraintes non linéaires.
7

A formal framework for run-time verification of Web applications : an approach supported by ccope-extended linear temporal logic

Haydar, May January 2007 (has links)
Thèse numérisée par la Direction des bibliothèques de l'Université de Montréal.

Page generated in 0.0662 seconds