Spelling suggestions: "subject:"automatic serve segmentation"" "subject:"2automatic serve segmentation""
1 |
A fully automatic nerve segmentation and morphometric parameter quantification system for early diagnosis of diabetic neuropathy in corneal imagesAl-Fahdawi, Shumoos, Qahwaji, Rami S.R., Al-Waisy, Alaa S., Ipson, Stanley S., Malik, R.A., Brahma, A., Chen, X. 27 July 2016 (has links)
Yes / Diabetic Peripheral Neuropathy (DPN) is one of the most common types of diabetes that can affect the cornea. An accurate analysis of the nerve structures can assist the early diagnosis of this disease. This paper proposes a robust, fast and fully automatic nerve segmentation and morphometric parameter quantification system for corneal confocal microscope images. The segmentation part consists of three main steps. First, a preprocessing step is applied to enhance the visibility of the nerves and remove noise using anisotropic diffusion filtering, specifically a Coherence filter followed by Gaussian filtering. Second, morphological operations are applied to remove unwanted objects in the input image such as epithelial cells and small nerve segments. Finally, an edge detection step is applied to detect all the nerves in the input image. In this step, an efficient algorithm for connecting discontinuous nerves is proposed. In the morphometric parameters quantification part, a number of features are extracted, including thickness, tortuosity and length of nerve, which may be used for the early diagnosis of diabetic polyneuropathy and when planning Laser-Assisted in situ Keratomileusis (LASIK) or Photorefractive keratectomy (PRK). The performance of the proposed segmentation system is evaluated against manually traced ground-truth images based on a database consisting of 498 corneal sub-basal nerve images (238 are normal and 260 are abnormal). In addition, the robustness and efficiency of the proposed system in extracting morphometric features with clinical utility was evaluated in 919 images taken from healthy subjects and diabetic patients with and without neuropathy. We demonstrate rapid (13 seconds/image), robust and effective automated corneal nerve quantification. The proposed system will be deployed as a useful clinical tool to support the expertise of ophthalmologists and save the clinician time in a busy clinical setting.
|
2 |
Novel medical imaging technologies for processing epithelium and endothelium layers in corneal confocal images. Developing automated segmentation and quantification algorithms for processing sub-basal epithelium nerves and endothelial cells for early diagnosis of diabetic neuropathy in corneal confocal microscope imagesHammadi, Shumoos T.H. January 2018 (has links)
Diabetic Peripheral Neuropathy (DPN) is one of the most common types of diabetes that can affect the cornea. An accurate analysis of the corneal epithelium nerve structures and the corneal endothelial cell can assist early diagnosis of this disease and other corneal diseases, which can lead to visual impairment and then to blindness. In this thesis, fully-automated segmentation and quantification algorithms for processing and analysing sub-basal epithelium nerves and endothelial cells are proposed for early diagnosis of diabetic neuropathy in Corneal Confocal Microscopy (CCM) images. Firstly, a fully automatic nerve segmentation system for corneal confocal microscope images is proposed. The performance of the proposed system is evaluated against manually traced images with an execution time of the prototype is 13 seconds. Secondly, an automatic corneal nerve registration system is proposed. The main aim of this system is to produce a new informative corneal image that contains structural and functional information. Thirdly, an automated real-time system, termed the Corneal Endothelium Analysis System (CEAS) is developed and applied for the segmentation of endothelial cells in images of human cornea obtained by In Vivo CCM. The performance of the proposed CEAS system was tested against manually traced images with an execution time of only 6 seconds per image. Finally, the results obtained from all the proposed approaches have been evaluated and validated by an expert advisory board from two institutes, they are the Division of Medicine, Weill Cornell Medicine-Qatar, Doha, Qatar and the Manchester Royal Eye Hospital, Centre for Endocrinology and Diabetes, UK.
|
3 |
An automatic corneal subbasal nerve registration system using FFT and phase correlation techniques for an accurate DPN diagnosisAl-Fahdawi, Shumoos, Qahwaji, Rami S.R., Al-Waisy, Alaa S., Ipson, Stanley S. January 2015 (has links)
Yes / Confocal microscopy is employed as a fast and non-invasive way to capture a sequence of images from different layers and membranes of the cornea. The captured images are used to extract useful and helpful clinical information for early diagnosis of corneal diseases such as, Diabetic Peripheral Neuropathy (DPN). In this paper, an automatic corneal subbasal nerve registration system is proposed. The main aim of the proposed system is to produce a new informative corneal image that contains structural and functional information. In addition a colour coded corneal image map is produced by overlaying a sequence of Cornea Confocal Microscopy (CCM) images that differ in their displacement, illumination, scaling, and rotation to each other. An automatic image registration method is proposed based on combining the advantages of Fast Fourier Transform (FFT) and phase correlation techniques. The proposed registration algorithm searches for the best common features between a number of sequenced CCM images in the frequency domain to produce the formative image map. In this generated image map, each colour represents the severity level of a specific clinical feature that can be used to give ophthalmologists a clear and precise representation of the extracted clinical features from each nerve in the image map. Moreover, successful implementation of the proposed system and the availability of the required datasets opens the door for other interesting ideas; for instance, it can be used to give ophthalmologists a summarized and objective description about a diabetic patient’s health status using a sequence of CCM images that have been captured from different imaging devices and/or at different times
|
Page generated in 0.1258 seconds