• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • No language data
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Measuring, refining and calibrating speaker and language information extracted from speech

Brummer, Niko 12 1900 (has links)
Thesis (PhD (Electrical and Electronic Engineering))--University of Stellenbosch, 2010. / ENGLISH ABSTRACT: We propose a new methodology, based on proper scoring rules, for the evaluation of the goodness of pattern recognizers with probabilistic outputs. The recognizers of interest take an input, known to belong to one of a discrete set of classes, and output a calibrated likelihood for each class. This is a generalization of the traditional use of proper scoring rules to evaluate the goodness of probability distributions. A recognizer with outputs in well-calibrated probability distribution form can be applied to make cost-effective Bayes decisions over a range of applications, having di fferent cost functions. A recognizer with likelihood output can additionally be employed for a wide range of prior distributions for the to-be-recognized classes. We use automatic speaker recognition and automatic spoken language recognition as prototypes of this type of pattern recognizer. The traditional evaluation methods in these fields, as represented by the series of NIST Speaker and Language Recognition Evaluations, evaluate hard decisions made by the recognizers. This makes these recognizers cost-and-prior-dependent. The proposed methodology generalizes that of the NIST evaluations, allowing for the evaluation of recognizers which are intended to be usefully applied over a wide range of applications, having variable priors and costs. The proposal includes a family of evaluation criteria, where each member of the family is formed by a proper scoring rule. We emphasize two members of this family: (i) A non-strict scoring rule, directly representing error-rate at a given prior. (ii) The strict logarithmic scoring rule which represents information content, or which equivalently represents summarized error-rate, or expected cost, over a wide range of applications. We further show how to form a family of secondary evaluation criteria, which by contrasting with the primary criteria, form an analysis of the goodness of calibration of the recognizers likelihoods. Finally, we show how to use the logarithmic scoring rule as an objective function for the discriminative training of fusion and calibration of speaker and language recognizers. / AFRIKAANSE OPSOMMING: Ons wys hoe om die onsekerheid in die uittree van outomatiese sprekerherkenning- en taalherkenningstelsels voor te stel, te meet, te kalibreer en te optimeer. Dit maak die bestaande tegnologie akkurater, doeltre ender en meer algemeen toepasbaar.

Page generated in 0.1173 seconds