• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 5
  • 2
  • 1
  • Tagged with
  • 9
  • 9
  • 9
  • 9
  • 6
  • 5
  • 4
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Motion tracking on embedded systems: vision-based vehicle tracking using image alignment with symmetrical function.

January 2007 (has links)
Cheung, Lap Chi. / Thesis (M.Phil.)--Chinese University of Hong Kong, 2007. / Includes bibliographical references (leaves 91-95). / Abstracts in English and Chinese. / Chapter 1. --- INTRODUCTION --- p.1 / Chapter 1.1. --- Background --- p.1 / Chapter 1.1.1. --- Introduction to Intelligent Vehicle --- p.1 / Chapter 1.1.2. --- Typical Vehicle Tracking Systems for Rear-end Collision Avoidance --- p.2 / Chapter 1.1.3. --- Passive VS Active Vehicle Tracking --- p.3 / Chapter 1.1.4. --- Vision-based Vehicle Tracking Systems --- p.4 / Chapter 1.1.5. --- Characteristics of Computing Devices on Vehicles --- p.5 / Chapter 1.2. --- Motivation and Objectives --- p.6 / Chapter 1.3. --- Major Contributions --- p.7 / Chapter 1.3.1. --- A 3-phase Vision-based Vehicle Tracking Framework --- p.7 / Chapter 1.3.2. --- Camera-to-vehicle Distance Measurement by Single Camera --- p.9 / Chapter 1.3.3. --- Real Time Vehicle Detection --- p.10 / Chapter 1.3.4. --- Real Time Vehicle Tracking using Simplified Image Alignment --- p.10 / Chapter 1.4. --- Evaluation Platform --- p.11 / Chapter 1.5. --- Thesis Organization --- p.11 / Chapter 2. --- RELATED WORK --- p.13 / Chapter 2.1. --- Stereo-based Vehicle Tracking --- p.13 / Chapter 2.2. --- Motion-based Vehicle Tracking --- p.16 / Chapter 2.3. --- Knowledge-based Vehicle Tracking --- p.18 / Chapter 2.4. --- Commercial Systems --- p.19 / Chapter 3. --- 3-PHASE VISION-BASED VEHICLE TRACKING FRAMEWORK --- p.22 / Chapter 3.1. --- Introduction to the 3-phase Framework --- p.22 / Chapter 3.2. --- Vehicle Detection --- p.23 / Chapter 3.2.1. --- Overview of Vehicle Detection --- p.23 / Chapter 3.2.2. --- Locating the Vehicle Center - Symmetrical Measurement --- p.25 / Chapter 3.2.3. --- Locating the Vehicle Roof and Bottom --- p.28 / Chapter 3.2.4. --- Locating the Vehicle Sides - Over-complete Haar Transform --- p.30 / Chapter 3.3. --- Vehicle Template Tracking Image Alignment --- p.37 / Chapter 3.3.5. --- Overview of Vehicle Template Tracking --- p.37 / Chapter 3.3.6. --- Goal of Image Alignment --- p.41 / Chapter 3.3.7. --- Alternative Image Alignment - Compositional Image Alignment --- p.42 / Chapter 3.3.8. --- Efficient Image Alignment - Inverse Compositional Algorithm --- p.43 / Chapter 3.4. --- Vehicle Template Update --- p.46 / Chapter 3.4.1. --- Situation of Vehicle lost --- p.46 / Chapter 3.4.2. --- Template Filling by Updating the positions of Vehicle Features --- p.48 / Chapter 3.5. --- Experiments and Discussions --- p.49 / Chapter 3.5. 1. --- Experiment Setup --- p.49 / Chapter 3.5.2. --- Successful Tracking Percentage --- p.50 / Chapter 3.6. --- Comparing with other tracking methodologies --- p.52 / Chapter 3.6.1. --- 1-phase Vision-based Vehicle Tracking --- p.52 / Chapter 3.6.2. --- Image Correlation --- p.54 / Chapter 3.6.3. --- Continuously Adaptive Mean Shift --- p.58 / Chapter 4. --- CAMERA TO-VEHICLE DISTANCE MEASUREMENT BY SINGLE CAMERA --- p.61 / Chapter 4.1 --- The Principle of Law of Perspective --- p.61 / Chapter 4.2. --- Distance Measurement by Single Camera --- p.62 / Chapter 5. --- REAL TIME VEHICLE DETECTION --- p.66 / Chapter 5.1. --- Introduction --- p.66 / Chapter 5.2. --- Timing Analysis of Vehicle Detection --- p.66 / Chapter 5.3. --- Symmetrical Measurement Optimization --- p.67 / Chapter 5.3.1. --- Diminished Gradient Image for Symmetrical Measurement --- p.67 / Chapter 5.3.2. --- Replacing Division by Multiplication Operations --- p.71 / Chapter 5.4. --- Over-complete Haar Transform Optimization --- p.73 / Chapter 5.4.1. --- Characteristics of Over-complete Haar Transform --- p.75 / Chapter 5.4.2. --- Pre-compntation of Haar block --- p.74 / Chapter 5.5. --- Summary --- p.77 / Chapter 6. --- REAL TIME VEHICLE TRACKING USING SIMPLIFIED IMAGE ALIGNMENT --- p.78 / Chapter 6.1. --- Introduction --- p.78 / Chapter 6.2. --- Timing Analysis of Original Image Alignment --- p.78 / Chapter 6.3. --- Simplified Image Alignment --- p.80 / Chapter 6.3.1. --- Reducing the Number of Parameters in Affine Transformation --- p.80 / Chapter 6.3.2. --- Size Reduction of Image A ligmnent Matrixes --- p.85 / Chapter 6.4. --- Experiments and Discussions --- p.85 / Chapter 6.4.1. --- Successful Tracking Percentage --- p.86 / Chapter 6.4.2. --- Timing Improvement --- p.87 / Chapter 7. --- CONCLUSIONS --- p.89 / Chapter 8. --- BIBLIOGRAPHY --- p.91
2

Development of granular-medium-based energy management system for automotive bumper applications

Mwangi, Maina Festus January 2009 (has links)
Thesis submitted in compliance with the requirements of the Master's Degree in Technology: Mechanical Engineering, Durban University of Technology, 2009. / Automotive bumpers are installed primarily to minimize damage and harm to both the automobile and passengers during minor and low speed collisions. The efficacy of the current bumper systems lies in absorbing the impact energy. The primary mechanism for energy absorption is damage. In this study an attempt is made to shift from this traditional design platform by exploring non-destructive energy dissipation mechanisms. In pursuit of this, an alternative bumper system that simulates human-arm ergonomic response to impact has been proposed. The system capitalizes on the characteristic dissipative mechanics of granular media. A mathematical model describing the dissipative mechanics of the system is presented. The model shows that granular media can be used effectively to re-direct the impulse wave away from its axis of incidence. The resulting effect is that the impulse wave is attenuated through the thickness. A second mathematical model, based on the Concept of Energy Balance has been developed. Here, the total impact energy is shown to be absorbed or dissipated by the individual components of the system. The largest component of this energy is taken up by sliding and rotation of the granular media. Both models are validated by experimentation. A prototype system has been built and tested. The system effectively manages impact energy with minimal or no damage to the constituent components. The system demonstrates an ability to recover dimensionally when loaded under FMVSS conditions. / Post Graduate Development Support
3

An investigation into road safety education in KwaZulu-Natal

Sunker, Neeraj January 2005 (has links)
Thesis (M.Tech.:Civil Engineering)-Dept of Civil Engineering and Survey, Durban Institute of Technology, 2005 xiv, 134 leaves, Annexures A-C / Road fatalities claim more than one million lives annually worldwide. The emotional, social and economic impact of road traffic fatalities demands urgent attention globally. This epidemic of road traffic fatalities is plaguing everyone, especially the poorer nations. Some countries like Australia and Sweden have been more successful than others in combating this epidemic. South Africa is currently seeking strategies to combat this epidemic because South Africa’s road traffic fatalities have been increasing annually, with a substantial percentage of teenagers and young adults between the ages of 16 and 29 contributing to these statistics. This age group will become or already have become part of the economically active population and concern is mounting as to why this particular age group is vulnerable. This thesis provides an overview of the road safety problem globally, nationally, provincially and locally and also looks at the historical factors that have contributed to this problem. The Victorian model, which has been classified as the ‘world’s best practice’, has been reviewed. A pilot survey was conducted at the Mangosuthu Technikon and the focal survey was conducted at the tertiary institutions in the Durban area. Students from this sector were selected as they fall in the most vulnerable age group and data was collected from them on various aspects of road safety. On analysing the data, various problems were identified, in particular, lack of resources and limited education pertaining to road safety. A range of possible solutions is recommended and the focus areas are the 3E’s namely: education, enforcement and engineering. However, the focal recommendation is on education and looks at the possibility of introducing learner’s licence testing to the grade 12 syllabi.
4

Game theoretical modelling of a driver's interaction with active steering

Na, Xiaoxiang January 2014 (has links)
No description available.
5

An investigation into road safety education in KwaZulu-Natal

Sunker, Neeraj January 2005 (has links)
Thesis (M.Tech.:Civil Engineering)-Dept of Civil Engineering and Survey, Durban Institute of Technology, 2005 xiv, 134 leaves, Annexures A-C / Road fatalities claim more than one million lives annually worldwide. The emotional, social and economic impact of road traffic fatalities demands urgent attention globally. This epidemic of road traffic fatalities is plaguing everyone, especially the poorer nations. Some countries like Australia and Sweden have been more successful than others in combating this epidemic. South Africa is currently seeking strategies to combat this epidemic because South Africa’s road traffic fatalities have been increasing annually, with a substantial percentage of teenagers and young adults between the ages of 16 and 29 contributing to these statistics. This age group will become or already have become part of the economically active population and concern is mounting as to why this particular age group is vulnerable. This thesis provides an overview of the road safety problem globally, nationally, provincially and locally and also looks at the historical factors that have contributed to this problem. The Victorian model, which has been classified as the ‘world’s best practice’, has been reviewed. A pilot survey was conducted at the Mangosuthu Technikon and the focal survey was conducted at the tertiary institutions in the Durban area. Students from this sector were selected as they fall in the most vulnerable age group and data was collected from them on various aspects of road safety. On analysing the data, various problems were identified, in particular, lack of resources and limited education pertaining to road safety. A range of possible solutions is recommended and the focus areas are the 3E’s namely: education, enforcement and engineering. However, the focal recommendation is on education and looks at the possibility of introducing learner’s licence testing to the grade 12 syllabi.
6

Lane departure avoidance system

Mukhopadhyay, Mousumi 08 1900 (has links)
Indiana University-Purdue University Indianapolis (IUPUI) / Traffic accidents cause millions of injuries and tens of thousands of fatalities per year worldwide. This thesis briefly reviews different types of active safety systems designed to reduce the number of accidents. Focusing on lane departure, a leading cause of crashes involving fatalities, we examine a lane-keeping system proposed by Minoiu Enache et al.They proposed a switched linear feedback (LMI) controller and provided two switching laws, which limit driver torque and displacement of the front wheels from the center of the lane. In this thesis, a state feedback (LQR) controller has been designed. Also, a new switching logic has been proposed which is based on driver's torque, lateral offset of the vehicle from the center of the lane and relative yaw angle. The controller activates assistance torque when the driver is deemed inattentive. It is deactivated when the driver regains control. Matlab/Simulink modeling and simulation environment is used to verify the results of the controller. In comparison to the earlier switching strategies, the maximum values of the state variables lie very close to the set of bounds for normal driving zone. Also, analysis of the controller’s root locus shows an improvement in the damping factor, implying better system response.
7

Adaptive QoS control of DSRC vehicle networks for collaborative vehicle safety applications

Guan, Wenyang January 2013 (has links)
Road traffic safety has been a subject of worldwide concern. Dedicated short range communications (DSRC) is widely regarded as a promising enabling technology for collaborative safety applications (CSA), which can provide robust communication and affordable performance to build large scale CSA system. The main focus of this thesis is to develop solutions for DSRC QoS control in order to provide robust QoS support for CSA. The first design objective is to ensure robust and reliable message delivery services for safety applications from the DSRC networks. As the spectrum resources allocated to DSRC network are expected to be shared by both safety and non-safety applications, the second design objective is to make QoS control schemes bandwidth-efficient in order to leave as much as possible bandwidth for non-safety applications. The first part of the thesis investigates QoS control in infrastructure based DSRC networks, where roadside access points (AP) are available to control QoS control at road intersections. After analyse DSRC network capabilities on QoS provisioning without congestion control, we propose a two-phases adaptive QoS control method for DSRC vehicle networks. In the first phase an offline simulation based approach is used to and out the best possible system configurations (e.g. message rate and transmit power) with given numbers of vehicles and QoS requirements. It is noted that with different utility functions the values of optimal parameters proposed by the two phases centralized QoS control scheme will be different. The conclusions obtained with the proposed scheme are dependent on the chosen utility functions. But the proposed two phases centralized QoS control scheme is general and is applicable to different utility functions. In the second phase, these configurations are used online by roadside AP adaptively according to dynamic traffic loads. The second part of the thesis is focused on distributed QoS control for DSRC networks. A framework of collaborative QoS control is proposed, following which we utilize the local channel busy time as the indicator of network congestion and adaptively adjust safety message rate by a modified additive increase and multiplicative decrease (AIMD) method in a distributed way. Numerical results demonstrate the effectiveness of the proposed QoS control schemes.
8

Modeling of low illuminance road lighting condition using road temporal profile

Dong, Libo 05 October 2015 (has links)
Indiana University-Purdue University Indianapolis (IUPUI) / Pedestrian Automatic Emergency Braking (PAEB) system for avoiding/mitigating pedestrian crashes have been equipped on some passenger vehicles. At present, there are many e orts for the development of common standard for the performance evaluation of PAEB. The Transportation Active Safety Institute (TASI) at Indiana University-Purdue University-Indianapolis has been studying the problems and ad- dressing the concerns related to the establishment of such a standard with support from Toyota Collaborative Safety Research Center (CSRC). One of the important components in the PAEB evaluation is the development of standard testing facili- ties at night, in which 70% pedestrian crash social costs occurs [1]. The test facility should include representative low-illuminance environment to enable the examination of sensing and control functions of di erent PAEB systems. This thesis work focuses on modeling low-illuminance driving environment and describes an approach to recon- struct the lighting conditions. The goal of this research is to characterize and model light sources at a potential collision case at low-illuminance environment and deter- mine possible recreation of such environment for PAEB evaluation. This research is conducted in ve steps. The rst step is to identify lighting components that ap- pear frequently on a low-illuminance environment that a ect the performance of the PAEB. The identi ed lighting components include ambient light, same side/opposite side light poles, opposite side car headlight. Next step is to collect all potential pedes- trian collision cases at night with GPS coordinate information from TASI 110 CAR naturalistic driving study video database. Thirdly, since ambient lighting is relatively random and lack of a certain pattern, ambient light intensity for each potential col- lision case is de ned and processed as the average value of a region of interest on all video frames in this case. Fourth step is to classify interested light sources from the selected videos. The temporal pro le method, which compressing region of interest in video data (x,y,t) to image data (x,y), is introduced to scan certain prede ned region on the video. Due to the fact that light sources (except ambient light) impose distinct light patterns on the road, image patterns corresponding to speci c light sources can be recognized and classi ed. All light sources obtained are stamped with GPS coordinates and time information which are provided in corresponding data les along with the video. Lastly, by grouping all light source information of each repre- sentative street category, representative light description of each street category can be generated. Such light description can be used for lighting construction of PAEB test facility.
9

Pedestrian Protection Using the Integration of V2V Communication and Pedestrian Automatic Emergency Braking System

Tang, Bo 01 December 2015 (has links)
Indiana University-Purdue University Indianapolis (IUPUI) / The Pedestrian Automatic Emergency Braking System (PAEB) can utilize on-board sensors to detect pedestrians and take safety related actions. However, PAEB system only benefits the individual vehicle and the pedestrians detected by its PAEB. Additionally, due to the range limitations of PAEB sensors and speed limitations of sensory data processing, PAEB system often cannot detect or do not have sufficient time to respond to a potential crash with pedestrians. For further improving pedestrian safety, we proposed the idea for integrating the complimentary capabilities of V2V and PAEB (V2V-PAEB), which allows the vehicles to share the information of pedestrians detected by PAEB system in the V2V network. So a V2V-PAEB enabled vehicle uses not only its on-board sensors of the PAEB system, but also the received V2V messages from other vehicles to detect potential collisions with pedestrians and make better safety related decisions. In this thesis, we discussed the architecture and the information processing stages of the V2V-PAEB system. In addition, a comprehensive Matlab/Simulink based simulation model of the V2V-PAEB system is also developed in PreScan simulation environment. The simulation result shows that this simulation model works properly and the V2V-PAEB system can improve pedestrian safety significantly.

Page generated in 0.143 seconds