• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • 1
  • Tagged with
  • 5
  • 5
  • 5
  • 5
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Expert System-based Autonomous Mission Control for Unmanned Aerial Vehicle

Ahmed, Salaheldin Ashraf Abdulrahiem 11 September 2018 (has links)
UAV applications have witnessed a great leap during the last decade including aerial photography, surveillance, inspection, mapping and many other applications. Using UAVs has many advantages over manned aerial vehicles. Reducing costs and avoiding putting human lives in danger are two major benefits. Currently, most of the UAVs are remotely controlled by human operators, either by having Line of Sight between the operator and the UAV or by controlling it from a ground control station. This may be fine in short missions. However, manually executing long and boring missions adds much inconvenience on the human operators and consumes more human resources. In addition, there is always the risk of losing the connection between the UAV and the human operators which leads to unpredicted, and probably catastrophic, consequences. The objective of this work is to reduce this inconvenience by moving the decision making responsibility from the human operators to the mission control system mounted on the UAV. In other words, the target is to design an on-board autonomous mission control system that has the capability of making decisions on-board and in real-time. Expert system technology, which is a type of artificial intelligence, is used to reach the autonomy of the target UAV. Expert system has the advantage of dealing with uncertainty during the mission execution. It also makes the system easily adaptable to execute any mission that can be described in form of rules. In this thesis, the design, implementation and testing of the expert system-based autonomous mission controller (ESBAMC) is covered. The target mission used to prove the feasibility of the proposed approach is the inspection of power poles. Power pole insulator is autonomously inspected by capturing three pictures from three different points of view. The proposed system has been successfully tested in simulation. Results show the performance and efficiency of the system to make decisions in real-time in any possible situation that may occur during the execution of the considered mission. In the near future, it is planned to test the proposed system in reality.
2

A framework for autonomous mission and guidance control of unmanned aerial vehicles based on computer vision techniques

Basso, Maik January 2018 (has links)
A computação visual é uma área do conhecimento que estuda o desenvolvimento de sistemas artificiais capazes de detectar e desenvolver a percepção do meio ambiente através de informações de imagem ou dados multidimensionais. A percepção visual e a manipulação são combinadas em sistemas robóticos através de duas etapas "olhar"e depois "movimentar-se", gerando um laço de controle de feedback visual. Neste contexto, existe um interesse crescimente no uso dessas técnicas em veículos aéreos não tripulados (VANTs), também conhecidos como drones. Essas técnicas são aplicadas para posicionar o drone em modo de vôo autônomo, ou para realizar a detecção de regiões para vigilância aérea ou pontos de interesse. Os sistemas de computação visual geralmente tomam três passos em sua operação, que são: aquisição de dados em forma numérica, processamento de dados e análise de dados. A etapa de aquisição de dados é geralmente realizada por câmeras e sensores de proximidade. Após a aquisição de dados, o computador embarcado realiza o processamento de dados executando algoritmos com técnicas de medição (variáveis, índice e coeficientes), detecção (padrões, objetos ou áreas) ou monitoramento (pessoas, veículos ou animais). Os dados processados são analisados e convertidos em comandos de decisão para o controle para o sistema robótico autônomo Visando realizar a integração dos sistemas de computação visual com as diferentes plataformas de VANTs, este trabalho propõe o desenvolvimento de um framework para controle de missão e guiamento de VANTs baseado em visão computacional. O framework é responsável por gerenciar, codificar, decodificar e interpretar comandos trocados entre as controladoras de voo e os algoritmos de computação visual. Como estudo de caso, foram desenvolvidos dois algoritmos destinados à aplicação em agricultura de precisão. O primeiro algoritmo realiza o cálculo de um coeficiente de reflectância visando a aplicação auto-regulada e eficiente de agroquímicos, e o segundo realiza a identificação das linhas de plantas para realizar o guiamento dos VANTs sobre a plantação. O desempenho do framework e dos algoritmos propostos foi avaliado e comparado com o estado da arte, obtendo resultados satisfatórios na implementação no hardware embarcado. / Cumputer Vision is an area of knowledge that studies the development of artificial systems capable of detecting and developing the perception of the environment through image information or multidimensional data. Nowadays, vision systems are widely integrated into robotic systems. Visual perception and manipulation are combined in two steps "look" and then "move", generating a visual feedback control loop. In this context, there is a growing interest in using computer vision techniques in unmanned aerial vehicles (UAVs), also known as drones. These techniques are applied to position the drone in autonomous flight mode, or to perform the detection of regions for aerial surveillance or points of interest. Computer vision systems generally take three steps to the operation, which are: data acquisition in numerical form, data processing and data analysis. The data acquisition step is usually performed by cameras or proximity sensors. After data acquisition, the embedded computer performs data processing by performing algorithms with measurement techniques (variables, index and coefficients), detection (patterns, objects or area) or monitoring (people, vehicles or animals). The resulting processed data is analyzed and then converted into decision commands that serve as control inputs for the autonomous robotic system In order to integrate the visual computing systems with the different UAVs platforms, this work proposes the development of a framework for mission control and guidance of UAVs based on computer vision. The framework is responsible for managing, encoding, decoding, and interpreting commands exchanged between flight controllers and visual computing algorithms. As a case study, two algorithms were developed to provide autonomy to UAVs intended for application in precision agriculture. The first algorithm performs the calculation of a reflectance coefficient used to perform the punctual, self-regulated and efficient application of agrochemicals. The second algorithm performs the identification of crop lines to perform the guidance of the UAVs on the plantation. The performance of the proposed framework and proposed algorithms was evaluated and compared with the state of the art, obtaining satisfactory results in the implementation of embedded hardware.
3

A framework for autonomous mission and guidance control of unmanned aerial vehicles based on computer vision techniques

Basso, Maik January 2018 (has links)
A computação visual é uma área do conhecimento que estuda o desenvolvimento de sistemas artificiais capazes de detectar e desenvolver a percepção do meio ambiente através de informações de imagem ou dados multidimensionais. A percepção visual e a manipulação são combinadas em sistemas robóticos através de duas etapas "olhar"e depois "movimentar-se", gerando um laço de controle de feedback visual. Neste contexto, existe um interesse crescimente no uso dessas técnicas em veículos aéreos não tripulados (VANTs), também conhecidos como drones. Essas técnicas são aplicadas para posicionar o drone em modo de vôo autônomo, ou para realizar a detecção de regiões para vigilância aérea ou pontos de interesse. Os sistemas de computação visual geralmente tomam três passos em sua operação, que são: aquisição de dados em forma numérica, processamento de dados e análise de dados. A etapa de aquisição de dados é geralmente realizada por câmeras e sensores de proximidade. Após a aquisição de dados, o computador embarcado realiza o processamento de dados executando algoritmos com técnicas de medição (variáveis, índice e coeficientes), detecção (padrões, objetos ou áreas) ou monitoramento (pessoas, veículos ou animais). Os dados processados são analisados e convertidos em comandos de decisão para o controle para o sistema robótico autônomo Visando realizar a integração dos sistemas de computação visual com as diferentes plataformas de VANTs, este trabalho propõe o desenvolvimento de um framework para controle de missão e guiamento de VANTs baseado em visão computacional. O framework é responsável por gerenciar, codificar, decodificar e interpretar comandos trocados entre as controladoras de voo e os algoritmos de computação visual. Como estudo de caso, foram desenvolvidos dois algoritmos destinados à aplicação em agricultura de precisão. O primeiro algoritmo realiza o cálculo de um coeficiente de reflectância visando a aplicação auto-regulada e eficiente de agroquímicos, e o segundo realiza a identificação das linhas de plantas para realizar o guiamento dos VANTs sobre a plantação. O desempenho do framework e dos algoritmos propostos foi avaliado e comparado com o estado da arte, obtendo resultados satisfatórios na implementação no hardware embarcado. / Cumputer Vision is an area of knowledge that studies the development of artificial systems capable of detecting and developing the perception of the environment through image information or multidimensional data. Nowadays, vision systems are widely integrated into robotic systems. Visual perception and manipulation are combined in two steps "look" and then "move", generating a visual feedback control loop. In this context, there is a growing interest in using computer vision techniques in unmanned aerial vehicles (UAVs), also known as drones. These techniques are applied to position the drone in autonomous flight mode, or to perform the detection of regions for aerial surveillance or points of interest. Computer vision systems generally take three steps to the operation, which are: data acquisition in numerical form, data processing and data analysis. The data acquisition step is usually performed by cameras or proximity sensors. After data acquisition, the embedded computer performs data processing by performing algorithms with measurement techniques (variables, index and coefficients), detection (patterns, objects or area) or monitoring (people, vehicles or animals). The resulting processed data is analyzed and then converted into decision commands that serve as control inputs for the autonomous robotic system In order to integrate the visual computing systems with the different UAVs platforms, this work proposes the development of a framework for mission control and guidance of UAVs based on computer vision. The framework is responsible for managing, encoding, decoding, and interpreting commands exchanged between flight controllers and visual computing algorithms. As a case study, two algorithms were developed to provide autonomy to UAVs intended for application in precision agriculture. The first algorithm performs the calculation of a reflectance coefficient used to perform the punctual, self-regulated and efficient application of agrochemicals. The second algorithm performs the identification of crop lines to perform the guidance of the UAVs on the plantation. The performance of the proposed framework and proposed algorithms was evaluated and compared with the state of the art, obtaining satisfactory results in the implementation of embedded hardware.
4

A framework for autonomous mission and guidance control of unmanned aerial vehicles based on computer vision techniques

Basso, Maik January 2018 (has links)
A computação visual é uma área do conhecimento que estuda o desenvolvimento de sistemas artificiais capazes de detectar e desenvolver a percepção do meio ambiente através de informações de imagem ou dados multidimensionais. A percepção visual e a manipulação são combinadas em sistemas robóticos através de duas etapas "olhar"e depois "movimentar-se", gerando um laço de controle de feedback visual. Neste contexto, existe um interesse crescimente no uso dessas técnicas em veículos aéreos não tripulados (VANTs), também conhecidos como drones. Essas técnicas são aplicadas para posicionar o drone em modo de vôo autônomo, ou para realizar a detecção de regiões para vigilância aérea ou pontos de interesse. Os sistemas de computação visual geralmente tomam três passos em sua operação, que são: aquisição de dados em forma numérica, processamento de dados e análise de dados. A etapa de aquisição de dados é geralmente realizada por câmeras e sensores de proximidade. Após a aquisição de dados, o computador embarcado realiza o processamento de dados executando algoritmos com técnicas de medição (variáveis, índice e coeficientes), detecção (padrões, objetos ou áreas) ou monitoramento (pessoas, veículos ou animais). Os dados processados são analisados e convertidos em comandos de decisão para o controle para o sistema robótico autônomo Visando realizar a integração dos sistemas de computação visual com as diferentes plataformas de VANTs, este trabalho propõe o desenvolvimento de um framework para controle de missão e guiamento de VANTs baseado em visão computacional. O framework é responsável por gerenciar, codificar, decodificar e interpretar comandos trocados entre as controladoras de voo e os algoritmos de computação visual. Como estudo de caso, foram desenvolvidos dois algoritmos destinados à aplicação em agricultura de precisão. O primeiro algoritmo realiza o cálculo de um coeficiente de reflectância visando a aplicação auto-regulada e eficiente de agroquímicos, e o segundo realiza a identificação das linhas de plantas para realizar o guiamento dos VANTs sobre a plantação. O desempenho do framework e dos algoritmos propostos foi avaliado e comparado com o estado da arte, obtendo resultados satisfatórios na implementação no hardware embarcado. / Cumputer Vision is an area of knowledge that studies the development of artificial systems capable of detecting and developing the perception of the environment through image information or multidimensional data. Nowadays, vision systems are widely integrated into robotic systems. Visual perception and manipulation are combined in two steps "look" and then "move", generating a visual feedback control loop. In this context, there is a growing interest in using computer vision techniques in unmanned aerial vehicles (UAVs), also known as drones. These techniques are applied to position the drone in autonomous flight mode, or to perform the detection of regions for aerial surveillance or points of interest. Computer vision systems generally take three steps to the operation, which are: data acquisition in numerical form, data processing and data analysis. The data acquisition step is usually performed by cameras or proximity sensors. After data acquisition, the embedded computer performs data processing by performing algorithms with measurement techniques (variables, index and coefficients), detection (patterns, objects or area) or monitoring (people, vehicles or animals). The resulting processed data is analyzed and then converted into decision commands that serve as control inputs for the autonomous robotic system In order to integrate the visual computing systems with the different UAVs platforms, this work proposes the development of a framework for mission control and guidance of UAVs based on computer vision. The framework is responsible for managing, encoding, decoding, and interpreting commands exchanged between flight controllers and visual computing algorithms. As a case study, two algorithms were developed to provide autonomy to UAVs intended for application in precision agriculture. The first algorithm performs the calculation of a reflectance coefficient used to perform the punctual, self-regulated and efficient application of agrochemicals. The second algorithm performs the identification of crop lines to perform the guidance of the UAVs on the plantation. The performance of the proposed framework and proposed algorithms was evaluated and compared with the state of the art, obtaining satisfactory results in the implementation of embedded hardware.
5

UAV Group Autonomy In Network Centric Environment

Suresh, M 07 1900 (has links) (PDF)
It is a well-recognized fact that unmanned aerial vehicles are an essential element in today’s network-centric integrated battlefield environment. Compared to solo UAV missions, multiple unmanned aerial vehicles deployed in co-operative mode, offer many advantages that has motivated UAV researchers all over the world to evolve concept of operations that aims in achieving a paradigm shift from traditional ”dull” missions to perform ”dirty” and ”dangerous” missions. In future success of a mission will depend on interaction among UAV groups with no interaction with any ground entity. To reach this capability level, it is necessary for researchers, to first understand the various levels of autonomy and the crucial role that information and communication plays in making these autonomy levels possible. The thesis is in four parts: (i) Development of an organized framework to realize the goal of achieving fully autonomous systems. (ii) Design of UAV grouping algorithm and coordination tactics for ground attack missions. (iii) Cooperative network management in GPS denied environments. (iv) UAV group tactical path and goal re-plan in GPS denied wide area urban environments. This research thesis represents many first steps taken in the study of autonomous UAV systems and in particular group autonomy. An organized framework for autonomous mission control level by defining various sublevels, classifying the existing solutions and highlighting the various research opportunities available at each level is discussed. Significant contribution to group autonomy research, by providing first of its kind solution for UAV grouping based on Dubins’ path, establishing GPS protected wireless network capable of operating in GPS denied environment and demonstration of group tactical path and goal re-plan in a layered persistent ISR mission is presented. Algorithms discussed in this thesis are generic in nature and can be applied to higher autonomous mission control levels, involving strategic decisions among UAVs, satellites and ground forces in a network centric environment.

Page generated in 0.0649 seconds