• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • Tagged with
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Commande prédictive pour conduite autonome et coopérative / Model predictive control for autonomous and cooperative driving

Qian, Xiangjun 15 December 2016 (has links)
La conduite autonome a attiré une attention croissante au cours des dernières décennies en raison de son potentiel impact socio-économique, notamment concernant la réduction du nombre d'accidents de la route et l'amélioration de l'efficacité du trafic. Grâce à l'effort de plusieurs instituts de recherche et d'entreprises, les véhicules autonomes ont déjà accumulé des dizaines de millions de kilomètres parcourus dans des conditions de circulation réelles. Cette thèse porte sur la conception d'une architecture de contrôle pour les véhicules autonomes et coopératifs dans l'optique de leur déploiement massif. La base commune des différentes architectures proposées dans cette thèse est le Contrôle-Commande Prédictif, reconnu pour son efficacité et sa polyvalence. Nous présentons tout d'abord une architecture classique de contrôle hiérarchique, qui utilise la commande prédictive pour planifier un déplacement (choix de trajectoire), puis déterminer un contrôle permettant de suivre cette trajectoire. Toutefois, comme nous le montrons dans un deuxième temps, cette architecture simple n'est pas capable de gérer certaines contraintes logiques, notamment liées aux règles de circulation et à l'existence de choix de trajectoires discrets. Nous proposons donc approche hybride de la commande prédictive, que nous utilisons pour développer une architecture de contrôle pour un véhicule autonome individuel. Nous étudions le problème de contrôler un ensemble de véhicules autonomes circulant en convoi, i.e. maintenir une formation prédéterminée sans intervention humaine. Pour ce faire, nous utilisons à nouveau une architecture hiérarchique basée sur la commande prédictive, composée d'un superviseur de convoi et de contrôleurs pour chaque véhicule individuel. Enfin, nous proposons encore une architecture pour le problème de coordonner un groupe de véhicules autonomes dans une intersection sans feux de circulation, en utilisant un contrôleur d'intersection et en adaptant les contrôleurs des véhicules individuels pour leur permettre de traverser l'intersection en toute sécurité. / Autonomous driving has been gaining more and more attention in the last decades, thanks to its positive social-economic impacts including the enhancement of traffic efficiency and the reduction of road accidents. A number of research institutes and companies have tested autonomous vehicles in traffic, accumulating tens of millions of kilometers traveled in autonomous driving. With the vision of massive deployment of autonomous vehicles, researchers have also started to envision cooperative strategies among autonomous vehicles. This thesis deals with the control architecture design of individual autonomous vehicles and cooperative autonomous vehicles. Model Predictive Control (MPC), thanks to its efficiency and versatility, is chosen as the building block for various control architectures proposed in this thesis. In more detail, this thesis first presents a classical hierarchical control architecture for individual vehicle control that decomposes the controller into a motion planner and a tracking controller, both using nonlinear MPC. In a second step, we analyze the inability of the proposed planner in handling logical constraints raised from traffic rules and multiple maneuver variants, and propose a hybrid MPC based motion planner that solves this issue. We then consider the convoy control problem of autonomous vehicles in which multiple vehicles maintain a formation during autonomous driving. A hierarchical formation control architecture is proposed composing of a convoy supervisor and local MPC based vehicle controllers. Finally, we consider the problem of coordinating a group of autonomous vehicles at an intersection without traffic lights. A hierarchical architecture composed of an intersection controller and multiple local vehicle controllers is proposed to allow vehicles to cross the intersection smoothly and safely.
2

Prise de décision et planification de trajectoire pour les véhicules coopératifs et autonomes / Decision-based motion planning for cooperative and autonomous vehicles

Altché, Florent 30 August 2018 (has links)
Le déploiement des futurs véhicules autonomes promet d'avoir un impact socio-économique majeur, en raison de leur promesse d'être à la fois plus sûrs et plus efficaces que ceux conduits par des humains. Afin de satisfaire à ces attentes, la capacité des véhicules autonomes à planifier des trajectoires sûres et à manœuvrer efficacement dans le trafic sera capitale. Cependant, le problème de planification de trajectoire au milieu d'obstacles statiques ou mobiles a une combinatoire forte qui est encore aujourd'hui problématique pour les meilleurs algorithmes.Cette thèse explore une nouvelle approche de la planification de mouvement, basée sur l'utilisation de la notion de décision de conduite comme guide pour structurer le problème de planification en vue de faciliter sa résolution. Cette approche peut trouver des applications pour la conduite coopérative, par exemple pour coordonner plusieurs véhicules dans une intersection non signalisée, ainsi que pour la conduite autonome où chaque véhicule planifie sa trajectoire. Dans le cas de la conduite coopérative, les décisions correspondent au choix d'un ordonnancement des véhicules qui peut être avantageusement encodé comme un graphe. Cette thèse propose une représentation similaire pour la conduite autonome, où les décisions telles que dépasser ou non un véhicule sont nettement plus complexes. Une fois la décision prise, il devient aisé de déterminer la meilleure trajectoire y correspondant, en conduite coopérative comme autonome. Cette approche basée sur la prise de décision peut permettre d'améliorer la robustesse et l'efficacité de la planification de trajectoire, et ouvre d'intéressantes perspectives en permettant de combiner des approches mathématiques classiques avec des techniques plus modernes d'apprentissage automatisé. / The deployment of future self-driving vehicles is expected to have a major socioeconomic impact due to their promise to be both safer and more traffic-efficient than human-driven vehicles. In order to live up to these expectations, the ability of autonomous vehicles to plan safe trajectories and maneuver efficiently around obstacles will be paramount. However, motion planning among static or moving objects such as other vehicles is known to be a highly combinatorial problem, that remains challenging even for state-of-the-art algorithms. Indeed, the presence of obstacles creates exponentially many discrete maneuver choices, which are difficult even to characterize in the context of autonomous driving. This thesis explores a new approach to motion planning, based on using this notion of driving decisions as a guide to give structure to the planning problem, ultimately allowing easier resolution. This decision-based motion planning approach can find applications in cooperative driving, for instance to coordinate multiple vehicles through an unsignalized intersection, as well as in autonomous driving where a single vehicle plans its own trajectory. In the case of cooperative driving, decisions are known to correspond to the choice of a relative ordering for conflicting vehicles, which can be conveniently encoded as a graph. This thesis introduces a similar graph representation in the case of autonomous driving, where possible decisions -- such as overtaking the vehicle at a specific time -- are much more complex. Once a decision is made, planning the best possible trajectory corresponding to this decision is a much simpler problem, both in cooperative and autonomous driving. This decision-aware approach may lead to more robust and efficient motion planning, and opens exciting perspectives for combining classical mathematic programming algorithms with more modern machine learning techniques.
3

Contrôle et optimisation des systèmes de transport intelligents dans le voisinage des intersections / Control and optimization for intelligent transportation systems in vicinity of intersections

Liu, Bing 09 September 2016 (has links)
Cette thèse est consacrée à étudier les applications potentielles de véhicules autonomes et communications V2X pour construire les systèmes de transport intelligents. Premièrement, le comportement de caravane dans un environnement de véhicule connecté est étudié. Un algorithme de commande de caravane est conçu pour obtenir l'espacement sécuritaire ainsi que la conformité de la vitesse et de l'accélération. Deuxièmement, à plus grande échelle, les caravanes autour d'une intersection sont considérées. Le débit pendant une période de signal de trafic peut être amélioré en tirant profit de la capacité redondante de la route. Dans diverses contraintes, les véhicules peuvent choisir d'accélérer et rejoindre la caravane précédente ou à décélérer de déroger à l'actuel. Troisièmement, une intersection sans signalisation en VANET est considérée. Dans des conditions de faible trafic, les véhicules peuvent réguler leur vitesse avant d'arriver à l'intersection en fonction du temps d'occupation de la zone de conflit (TOZC) stocké au niveau du gestionnaire, afin qu'ils puissent traverser l'intersection sans collision ni arrêt. Le délai peut être réduit en conséquence. Enfin, un algorithme de gestion d'intersection autonome universelle, qui peut fonctionner même avec le trafic lourd, est développé. Le véhicule cherche à sécuriser les fenêtres entrant dans le TOZC. Ensuite, sur la base des fenêtres trouvées et le mouvement du véhicule qui précède, les trajectoires des véhicules peuvent être planifiées en utilisant une méthode de programmation dynamique segmentée. Tous les algorithmes conçus sont testés et vérifiés avec succès par des simulations dans scénarios différents / This thesis is devoted to study the potential applications of autonomous vehicles and V2X communications to construct the intelligent transportation systems. Firstly, the behavior of platoon in connected vehicle environment is studied. A platoon control algorithm is designed to obtain safe spacing as well as accordance of velocity and acceleration for vehicles in the same lane. Secondly, in larger scale, the platoons around an intersection are considered. The throughput in a traffic signal period can be improved by taking advantage of the redundant road capacity. Within diverse constraints, vehicles can choose to accelerate to join in the preceding platoon or to decelerate to depart from the current one. Thirdly, an unsignalized intersection in VANET is considered. In light traffic conditions, vehicles can regulate their velocities before arriving at the intersection according to the conflict zone occupancy time (CZOT) stored at the manager, so that they could get through the intersection without collision or stop. The delay can be reduced accordingly. Finally, an universal autonomous intersection management algorithm, which can work even with heavy traffic, is developed. The vehicle searches for safe entering windows in the CZOT. Then based on the found windows and the motion of preceding vehicle, the trajectories of vehicles can be planned using a segmented dynamic programming method. All the designed algorithms are successfully tested and verified by simulations in various scenarios

Page generated in 0.2059 seconds