• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • Tagged with
  • 3
  • 3
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

The role of phosphatidylinositol 3-kinases in autophagy regulation

Devereaux, Kelly Anne January 2014 (has links)
Autophagy requires the biogenesis of autophagosomes (APs), which are large multilamellar vesicles that sequester cytoplasmic substrates and undergo a maturation process that ultimately leads to their fusion with lysosomes. Previous studies have suggested that local production of phosphatidylinositol-3-phosphate (PI3P) by class III phosphatidylinositol 3-kinase (PI3K) (i.e., Vps34) is required for AP biogenesis at specialized sites of the endoplasmic reticulum called "omegasomes". Although Vps34 is the sole source of PI3P in budding yeast, mammalian cells can produce PI3P through alternate pathways, including direct synthesis by the class II PI3Ks; however, the physiological relevance of these alternate pathways in the context of autophagy is unknown. To address this question, we generated Vps34 knock-out mouse embryonic fibroblasts (MEFs) and analyzed the impact of Vps34 deletion on autophagy in mammalian cells. Using a novel higher affinity 4x-FYVE finger PI3P-binding probe, we found a Vps34-independent pool of PI3P accounting for ~35% of the total amount of this lipid species by biochemical analysis. Importantly, WIPI-1, an autophagy-relevant PI3P probe, still formed some puncta upon starvation-induced autophagy in the Vps34 knock-out MEFs. Additional characterization of autophagy by electron microscopy as well as protein degradation assays showed that while Vps34 is important for starvation-induced autophagy there is a significant component of functional autophagy occurring in the absence of Vps34. Given these findings, class II PI3Ks (α and β isoforms) were examined as potential positive regulators of autophagy. Depletion of class II PI3Ks reduced recruitment of WIPI-1 and LC3 to AP nucleation sites and caused an accumulation of the autophagy substrate, p62, which was exacerbated upon the concomitant ablation of Vps34. Our studies indicate that while Vps34 is the main PI3P source during autophagy, class II PI3Ks also significantly contribute to PI3P generation and regulate AP biogenesis. In addition, we used a lipidomic approach to capture the lipid profile of cells in the presence and absence of Vps34 under steady-state and during starvation-induced autophagy. Lipidomics is an emerging powerful tool with the potential to identify new interconnected metabolic lipid networks as well as generate new hypotheses. Here, we identified a new relationship between Vps34 and cholesterol homeostasis. Additionally, we identified specific changes in lysolipids during autophagy. Lastly, we investigated whether the retromer complex plays a role in autophagy. Retromer is a protein complex that binds PI3P on the endosomal membrane and mediates retrograde trafficking of transmembrane proteins from the endosome to the trans-Golgi network. Recent studies have shown a downregulation of this complex associated with sporadic Alzheimer's disease (AD) and have demonstrated aberrant trafficking and processing of APP, a pathological feature of AD, as a result of retromer deficiency. Because retromer is important for maintaining endo-lysosomal system function, we hypothesized that it promote efficient autophagy and may contribute to the dysfunctional autophagy observed in AD when impaired. Using standard autophagy assays, such as assessing LC3 conjugation and puncta formation, our preliminary studies suggest a negative regulatory role for retromer in autophagy. Additionally, we observed a strong association of retromer with Atg9, an autophagy-related gene transmembrane protein that is believe to traffic lipids to the growing autophagosome membrane and recycle autophagy proteins from this compartment.
2

Role of motor neuron autophagy in a mouse model of Amyotrophic Lateral Sclerosis

Rudnick, Noam Daniel January 2016 (has links)
Amyotrophic Lateral Sclerosis (ALS) is a neurological disease characterized by the degeneration of upper and lower motor neurons. Genetic studies have revealed that many ALS-associated genes are involved in autophagy, but the role of this pathway in motor neurons remains poorly understood. Here, we use the SOD1G93A mouse model to investigate the role of autophagy in ALS. We find neuronal subtype-specific regulation of autophagy over the course of disease progression. Vulnerable motor neurons form large GABARAPL1-positive autophagosomes that engulf ubiquitinated cargo recognized by the selective autophagy receptor p62. Other motor neurons and interneurons do not engulf cargo within GABARAPL1-positive autophagosomes and instead accumulate somatodendritic aggregates. To investigate whether motor neuron autophagy is protective or detrimental, we generated mice in which the critical autophagy gene Atg7 is specifically disrupted in motor neurons. Phenotypic analysis of these mice revealed that autophagy is dispensable for motor neuron survival but plays a key role in regulating presynaptic structure and function. By crossing these mice to the SOD1G93A mouse model, we find that autophagy inhibition accelerates early neuromuscular denervation and neurological dysfunction. However, loss of autophagy in motor neurons eventually leads to an extension of lifespan, and this is associated with reduced pathology in interneurons and glial cells. These data suggest that vulnerable motor neurons rely on autophagy to maintain neuromuscular innervation early in disease. However, autophagy eventually acts in a non-cell autonomous manner to promote disease spread and neuroinflammation. Our results reveal counteracting roles for motor neuron autophagy early and late in ALS disease progression.
3

Molecular Dynamics Simulations of Microtubule-associated protein 1A/1B-light chain 3 (LC3) and its membrane associated form(LC3-II)

Mathew, Shyno January 2017 (has links)
Autophagy is the process by which cells eliminate its unwanted or dysfunctional components. A major step in autophagy is the formation of autophagosome, the double membrane that engulfs the unwanted cellular components. Dysregulation of autophagy affects neurodegenerative disorders, infectious diseases, cancer, and aging. In yeast, Atg8 protein is considered to play a crucial role in autophagosome maturation. Studies have shown that yeast lacking Atg8 protein form extremely small autophagosomes. Similarly, mammalian cells lacking Atg8 homologues produced “open” autophagosomes. Microtubule-associated protein (MAP) light chain3 (LC3), a human homologue of Atg8 protein is considered to play a major role in autophagosome maturation. However the exact mechanism by which Atg8/LC3 affects the autophagosome maturation is not completely known. A possible mechanism evolving from various studies is the following: Upon binding to the autophagosome, Atg8 family undergoes a conformational transition, which allows it to associate with another membrane-bound Atg8 in a trans-fashion. The proposed goals of this research include testing this hypothesis, identifying the stable conformations of LC3 and LC3-II (membrane bound LC3) and getting insights into the molecular mechanism by which LC3 influence autophagosome maturation. To accomplish this, we are performing Hamiltonian replica exchange molecular dynamics (HREMD) simulations on LC3 and on LC3-II. The most stable conformations of LC3, and LC3-II are identified via clustering analysis. As autophagy modulation is considered as a potential therapeutic target for various diseases, understanding the molecular mechanisms of different stages of autophagy is very important.

Page generated in 0.0512 seconds