• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Origine et dynamique des avalanches des débris volcaniques : analyse des structures de surface au volcan Tutupaca (Pérou) / Origin and dynamics of volcanic debris avalanches : surface structure analysis of Tutupaca volcano (Peru)

Valderrama Murillo, Patricio 30 September 2016 (has links)
Les glissements de terrain se produisent dans toutes les chaînes de montagnes où la résistance de massifs rocheux est insuffisante pour contrer l’action de la gravité. Les terrains volcaniques sont particulièrement susceptibles de s’effondrer car les édifices sont composés des lithologies diverses et variées qui peuvent être fortement fracturées. En plus, la croissance rapide des édifices volcaniques favorise leur instabilité et leur effondrement. L’activité magmatique est un facteur additionnel responsable de la déformation des édifices, tandis que l’activité hydrothermale réduit la résistance des roches volcaniques. Pour ces raisons, l’évaluation des aléas liés à l’effondrement des édifices et à la formation des avalanches des débris volcaniques mérite une attention particulière. Les caractéristiques physiques des composants des avalanches des débris ont une influence directe sur la dynamique de ce type d'écoulement. Les dépôts des avalanches de débris présentent une morphologie de surface composée des nombreuses collines (hummocks), qui montrent fréquemment les séquences volcaniques initiales, ce qui suggère un mécanisme de mise en place proche de celui des glissements de terrain. Cependant, d’autres dépôts présentent des crêtes allongées (rides) dont le mécanisme de formation est encore méconnu. Le volcan Tutucapa (sud du Pérou) a été affecté récemment par deux avalanches de débris. La plus ancienne, « Azufre », est d’âge Holocène et résulte de l’effondrement d’un complexe des dômes et d’une séquence volcanique altérée (hydrothermalisée) sous-jacente. La deuxième avalanche, « Paipatja », a eu lieu il y a seulement 200-230 ans BP et est associée à une grande éruption explosive du Tutupaca. Les dépôts de cette avalanche présentent notamment de nombreuses rides. Les deux dépôts d’avalanche montrent deux unités différentes : une unité inférieure, caractérisée par la présence des blocs altérés (hydrothermalisés) provenant de l’édifice basal, tandis que l’unité supérieure est constituée par des blocs du complexe de dômes actifs. Le travail de terrain montre que les rides de l’avalanche « Paipatja » présentent une forte variation de granulométrie entre leur partie centrale (enrichie en blocs grossiers) et leurs parties latérales, ce qui suggère un processus de ségrégation granulaire. Des expériences analogiques montrent que des écoulements de mélanges de particules des différentes tailles subissent un processus de ségrégation et de digitation granulaire qui engendre des rides par jonction de levées statiques qui délimitent un chenal d’écoulement. Le processus de formation des rides est facilité par de faibles différence de taille des particules dans des mélanges bidisperses. Ces résultats suggèrent que les rides observées au Tutupaca résultent d’un écoulement granulaire. Les principales caractéristiques morphologiques des structures formées lors de ces expériences de laboratoire ont été comparées qualitativement avec les structures observées dans les dépôts du Tutupaca. Les structures observées au Tutupaca montrent que deux mécanismes de mise en place peuvent coexister dans les avalanches de débris volcaniques : le glissement de blocs plus ou moins cohérents, et l’écoulement semblable à celui d’un matériau granulaire. Cela dépend probablement de la nature des différents matériaux à la source des avalanches. Cette information doit être prise en compte pour l’évaluation des aléas liés aux avalanches des débris car des mécanismes d’écoulement différents peuvent induire des fortes variations de la distance parcourue par ces avalanches. / Landslides occur in all mountainous terrain, where the rock strength is unable to support topographic loading. Volcanic rocks are particularly landslide prone, as they mix strong and weak lithologies and are highly pre-fractured. Also, volcanoes themselves, are peculiar mountains, as they grow, thus creating their own topographic instability. Magmatic activity also deforms the edifice, and hydrothermal activity reduces strength. For all these reasons, volcanoes need close consideration for hazards, especially for the landslide-derived rock avalanches. The characteristics and properties of different debris avalanche components influence their behavior during motion. Deposits are generally hummocky, preserving original layering, which indicates a slide-type emplacement. However, some deposits have ridged morphology for which the formation mechanisms are not well understood. Two recent debris avalanches occurred at the Tutupaca volcano (S Peru). The first one, “Azufre” is Holocene and involved the collapse of active domes and underlying older hydrothermally altered rocks. The second debris avalanche, “Paipatja” occurred 200-230 y BP and is associated with a large explosive event and this deposit is ridged. The excellent conservation state of the deposits and surface structures allows a comprehensive analysis of the ridges. Both deposits have two contrasting units: a lower basal edifice-derived hydrothermally-rich subunit and an upper dome-derived block-rich unit. Detailed fieldwork has shown that Paipatja ridges have coarser core material and are finer in troughs, suggesting grain size segregation. Using analog experiments, the process that allow ridge formation are explored. We find that the mixtures undergo granular segregation and differential flow that create fingering that forms ridges by junction of static léeves defining a channel flow. Granular segregation and fingering are favored by small particle size contrast during bi-dispersed flow. The results suggest that the ridges observed at Tutupaca are product of a granular flow We extract the morphological characteristics of the deposits of granular flows generated in the laboratory and make a qualitative comparison with the Tutupaca deposits. The description of the different landslide and debris avalanche features at Tutupaca shows that two types of debris avalanche motion can occur in volcanic debris avalanches: the sliding of blocks more or less coherent and a flow similar to a granular material. This probably depends on source materials and the conditions of different parts of the initial landslide. Such information should be taken into account when estimating hazards at other volcanic landslide sites, as the different behaviors may result in different run outs.
2

Mount Meager, a glaciated volcano in a changing cryosphere : hazards and risk challenges / Mount Meager, un volcan glaciaire dans une cryosphère en mutation : dangers et risques

Roberti, Gioachino 24 October 2018 (has links)
Mount Meager est un complexe volcanique glaciaire en British Columbia (Canada). Il est connu pour ses glissements de terrain, dont celui de 2010 étant le plus grand glissement de terrain historique au Canada. Dans cette thèse, nous avons étudié les processus d'instabilités du volcan Mont Meager ainsi que les effets de la déglaciation en cours. Nous avons utilisé une approche pluridisciplinaire, intégrant la cartographie géologique, géomorphologique et structurelle, du terrain et de la télédétection, pour caractériser l'activité glaciaire et les glissements de terrain au Mount Meager. Nous avons utilisé la photogrammétrie Structure from Motion (SfM) et la technologie Lidar pour produire des modèles numériques de terrain, et techniques InSAR pour surveiller le mouvement et la déformation des pentes du volcan. Nous avons appliqué la technique SfM à des photographies aériennes historiques pour documenter les activités des glaciers et des glissements de terrain au Mount Meager. Nous avons discuté un modèle de croissance et d'érosion d'un volcan en période glaciaire et interglaciaire, ainsi que la valeur scientifique et de vulgarisation de la reconstruction topographique 3D. Nous avons décrit les dépôts de glissement de terrain de 2010 à Mount Meager pour interpréter la dynamique de leur mise en place. Le glissement de terrain de 2010 s'est divisé en phases riches en eau et pauvres en eau, ayant des distances d'écoulement différentes et des dépôts distincts. Nous avons analysé des photographies aériennes historiques remontant à 1948, afin de documenter la déformation de la pente avant l'effondrement de 2010. Le glacier situé a proximité du pied de la pente a reculé durant les années précédents la rupture. Cette effondrement a évolué en quatre sous-effondrements, impliquant toute la séquence volcanique et le socle. Nous avons estimé 6 × 106 m3 d'eau dans la pente, ce qui a permis la séparation de la phase frontale riche en eau. Le volume total d'effondrement est 53 ± 3.8 × 106 m3. Nous avons identifié 27 grands (>5×105 m2) flancs instables au Mount Meager et calculé a ~1.3 km3 de récession des glaciers depuis 1987. Le flanc ouest de Plinth Peak et de la vallée de Devastation Creek se sont déplacés de -34±10 mm -36±10 mm, respectivement, dans un période de 24 jours pendant l'été 2016. L’effondrement de ces flancs pourrait avoir un impact important sur les infrastructures et les communautés en aval du volcan. La décompression résultant de l'édifice volcanique après l'effondrement du flanc ouest de Plinth Peak affecterait le champ de contrainte à une profondeur de 6 km et jusqu'à 4 MPa. Cette décompression soudaine pourrait mener des éruptions hydrothermales et magmatiques. Un important glissement de terrain pourrait donc avoir joué un rôle dans le déclenchement de l'éruption de 2360 cal BP. / Mount Meager is a glacier-clad volcanic complex in British Columbia, Canada. It is known for its landslides, of which the 2010 is the largest Canadian historical landslide. In this thesis we investigated slope instability processes at Mount Meager volcano and the effects of ongoing deglaciation. We used a variety of methods including field and remote, geological, geomorphological and structural mapping to characterize glacial and landslide activity at Mount Meager. We used Structure from Motion photogrammetry (SfM) and Lidar to produce digital surface models and InSAR to monitor slope deformation. We applied SfM to historic photography to document glacier and landslide activity at Mount Meager. We discussed a model of growth and erosion of a volcano in glacial and interglacial periods, and the scientific and dissemination value of historic 3D topographic reconstruction. We described the 2010 Mount Meager landslide deposit to interpret emplacement dynamics and kinematics. The 2010 landslide separated in water-rich and water-poor phases that had different runout and distinct deposits. We analyzed historic airphotos to constrain the slope deformation prior to the 2010 collapse. The glacier near the toe of the slope retreated in the failure lead up, the collapse evolved in four subfailures involving the whole volcanic sequence and some basement rocks. We estimated 6 × 106 m3 of water in the slope, that allowed the separation of the frontal water-rich phase. The total failure volume was 53 ± 3.8 × 106 m3. We identified 27 large (>5×105 m2) unstable slopes at Mount Meager and calculated ~1.3 km3 of ice loss since 1987. The west flank of Plinth peak and Devastation Creek valley moved up to -34±10 mm and -36±10 mm, respectively, over a 24-day period during the summer of 2016. The failure of these slopes could impact infrastructures and communities downstream of the volcano. The resulting decompression on the volcanic edifice after the failure of Plinth peak would affect the stress field to a depth of 6 km and up to 4 MPa. This sudden decompression could lead to hydrothermal or magmatic eruptions.

Page generated in 0.0701 seconds