Spelling suggestions: "subject:"coverage fact"" "subject:"beverage fact""
1 |
A framework for facial age progression and regression using exemplar face templatesElmahmudi, Ali A.M., Ugail, Hassan 20 March 2022 (has links)
Yes / Techniques for facial age progression and regression have many applications and a myriad of challenges. As such, automatic aged or de-aged face generation has become an important subject of study in recent times. Over the past decade or so, researchers have been working on developing face processing mechanisms to tackle the challenge of generating realistic aged faces for applications related to smart systems. In this paper, we propose a novel approach to try and address this problem. We use template faces based on the formulation of an average face of a given ethnicity and for a given age. Thus, given a face image, the target aged image for that face is generated by applying it to the relevant template face image. The resulting image is controlled by two parameters corresponding to the texture and the shape of the face. To validate our approach, we compute the similarity between aged images and the corresponding ground truth via face recognition. To do this, we have utilised a pre-trained convolutional neural network based on the VGG-face model for feature extraction, and we then use well-known classifiers to compare the features. We have utilised two datasets, namely the FEI and the Morph II, to test, verify and validate our approach. Our experimental results do suggest that the proposed approach achieves accuracy, efficiency and possess flexibility when it comes to facial age progression or regression.
|
2 |
Computational Face Recognition Using Machine Learning ModelsElmahmudi, Ali A.M. January 2021 (has links)
Faces are among the most complex stimuli that the human visual system
processes. Growing commercial interest in face recognition is encouraging, but it
also turns out to be a challenging endeavour. These challenges arise when the
situations are complex and cause varied facial appearance due to e.g., occlusion,
low-resolution, and ageing. The problem of computer-based face recognition
using partial facial data is still largely an unexplored area of research and how
does computer interpret various parts of the face. Another challenge is age
progression and regression, which is considered to be the most revealing topic
for understanding the human face changes during life.
In this research, the various computational face recognition models are
investigated to overcome the challenges posed by ageing and occlusions/partial
faces. For partial face-based face recognition, a pre-trained VGGF model is
employed for feature extraction and then followed by popular classifiers such as
SVMs and Cosine Similarity CS for classification. In this framework, parts of faces
such as eyes, nose, forehead, are used individually for training and testing. The
results showing that there is an improvement in recognition in small parts, such
as recognition rate in forehead enhanced form about 0% to nearly 35%, eyes
from about 22% to approximately 65%. In the second framework, five sub-models
were built based on Convolutional Neural Networks (CNNs) and those models
are named Eyes-CNNs, Nose-CNNs, Mouth-CNNs, Forehead-CNNs, and
combined EyesNose-CNNs. The experimental results illustrate a high recognition
rate when it comes to small parts, for example, eyes increased up to about
90.83% and forehead reached about 44.5%. Furthermore, the challenge of face
ageing is also approached by proposing an age-template based framework,
generating an age-based face template for enhanced face generation and
recognition. The results showing that generated new aged faces are more reliable
comparing with state-of-the-art.
|
Page generated in 0.0605 seconds