Spelling suggestions: "subject:"axial elongation"" "subject:"axial élongation""
1 |
Regulation of Axial Elongation by CdxZhu, Yalun 11 January 2022 (has links)
During mouse development, the primordia of the posterior body including the trunk and tail tissues of the embryo forms largely from a bipotential cell population that resides in the posterior growth zone in vertebrate embryos. This bipotential cell population contains neuromesodermal progenitors (NMP) which are found in the tail bud which replaces the primitive streak after gastrulation and contributes to axial elongation by the formation of both the spinal cord and paraxial mesoderm derivatives. The three vertebrate Cdx genes, Cdx1, Cdx2 and Cdx4, encode transcription factors that play important roles in axial elongation since the triple Cdx mutant embryos fail to generate any tissue posterior to the occipital primordia. A comparison of Cdx mutant phenotypes suggests that Cdx2 is the most important contributor to axial elongation since Cdx2 heterozygous mutants exhibit foreshortened tails and Cdx2 conditional mutants exhibit axial truncation and complete loss of tail bud structures. Cdx2 target genes, such as Wnt3a, Cyp26a1 and T, are also essential for axial elongation. Cdx1 null mutants are viable and exhibit homeosis of cervical and anterior thoracic vertebrae, while Cdx4 null mutants are phenotypically normal. In addition, it has been shown that simultaneous loss of multiple copies of Cdx alleles disrupts axial elongation more severely than each single mutation which suggests there is overlapping function among the Cdx family. The genetic network underlying regulation of axial elongation by the Cdx family is not fully understood due in part to this functional overlap. In this thesis, I employed a conditional Cre-loxP system to derive conditional mutants lacking all Cdx functions. Additionally, Pax2-GFP transgenic mice where GFP is expressed under the control of Pax2 locus were used to enrich tail bud NMP cells for RNA-seq and ChIP-seq analysis for Cdx2. Using this approach, I revealed new target genes and pathways that are regulated by Cdx members and likely involved in axial elongation.
|
2 |
Transient axial length change during the accommodation response in young adultsMallen, Edward A.H., Hampson, Karen M., Kashyap, Priti January 2006 (has links)
No / The aims of the research may be outlined as follows: to measure the degree of transient axial elongation during the accommodation response in emmetropic and myopic young adults. To evaluate the effect of refractive error and accommodative demand on transient axial elongation of the eye. Axial length of the right eye was measured in 30 emmetropes and 30 myopes, by using the IOLMaster (Carl Zeiss Meditec, Inc., Dublin, CA), while accommodative stimuli of 0, 2, 4 and 6 D were presented with a Badal optometer. Axial length increased in both emmetropic and myopic subjects during short periods of accommodative stimulation. Greater transient increases in axial length were observed in myopic than in emmetropic subjects. The mean axial elongation with a 6-D stimulus to accommodation was 0.037 mm in emmetropes and 0.058 mm in myopes (P = 0.02). The degree of transient axial elongation correlated well with the stimulus to accommodation in emmetropes and myopes. Anterior chamber depth decreased, on average, by 0.19 mm in emmetropes and 0.18 mm in myopes when observing a 6-D stimulus to accommodation.
During relatively short periods of accommodative stimulation, axial length increases in both emmetropic and myopic young adults. At higher levels of accommodative stimulation, a significantly greater transient increase in axial length is observed in myopic subjects than in their emmetropic counterparts.
|
3 |
The generation of a candidate axial precursor in three dimensional aggregates of mouse embryonic stem cellsBaillie-Johnson, Peter January 2017 (has links)
Textbook accounts of vertebrate embryonic development have been based largely upon experiments on amphibian embryos, which have shown that the tissues of the trunk and tail are organised from distinct precursors that existed during gastrulation. In the mouse and chick, however, retrospective clonal analyses and transplantation experiments have demonstrated that the amniote body instead arises progressively from a population of axial precursors that are common to both the neural and mesodermal tissues of the trunk and tail. For this reason, they are known as neuro-mesodermal progenitors (NMps). Detailed studies of NMps have been precluded by their lack of a unique gene expression profile and the technical difficulties associated with isolating them from the embryo. Mouse embryonic stem cells (ESCs) provide the possibility of instead deriving them in vitro. ESCs have been used to model developmental processes, partly through large cellular aggregates known as embryoid bodies. These structures do not, however, resemble the axial organisation of the embryo and they develop in a disordered manner. This thesis presents a novel culture system of small, three-dimensional aggregates of ESCs (gastruloids) that can recreate the events of early post-implantation development, including axial elongation. Gastruloids are the first ESC-based model for axial elongation morphogenesis; this body of work characterises their development and identifies a candidate population of NMps within their elongating tissues. Additionally, this work establishes a xenotransplantation assay for testing the functional properties of in vitro-derived NMp populations in the chicken embryo and applies it to NMps from gastruloid cultures. The results of this assay show that gastruloids are a credible source of NMps in vitro and therefore offer a new experimental means to interrogate their properties. The use of gastruloids to recreate embryonic development has implications for basic research as a synthetic system and for the therapeutic derivation of other embryonic progenitors through bioengineering.
|
Page generated in 0.0967 seconds