Spelling suggestions: "subject:"axial biston pump"" "subject:"axial biston jump""
11 |
Assessment of Alternate Viscoelastic Contact Models for a Bearing Interface between an Axial Piston Pump Swash Plate and HousingMiller, Adam Charles 02 October 2014 (has links)
No description available.
|
12 |
Návrh ventilového bloku rekuperačního hydrostatického modulu vozidla / Design of valve block for hydrostatic recuperative module of vehicleRanuša, Matúš January 2014 (has links)
The Master`s Thesis deals with design and construction of a valve block for a hydrostatic recuperative module of a vehicle with a direct application on pneu tyred roller AP 240H produced by the AMMANN company. The thesis aims to analyze recovery functions of the valve block in several operating modes of the roller, followed by a selection of the right hydraulic components from the perspective of predefined parameters and pressure differences. Design specifications are based on measurements and mathematical simulations on the experimental stand. The experimental stand for this application has been developed at 1:4 scale as compared to a real vehicle. The thesis includes also design of the supporting console for the module on the frame of the vehicle. The Master`s Thesis is a part of project EUREKA with cooperation Bosch Rexroth.
|
13 |
Challenges for novel lead-free Alloys in HydraulicsReetz, Björn, Münch, Tileman 23 June 2020 (has links)
Different special brass (e.g. CuZn37Mn3Al2PbSi) and bronze alloys (e.g. CuPb15Sn) are well known for use in oil-hydraulics having in common to be alloyed with lead. The lead content of special brass alloys in this use ranges from 0.1 to 2.0 mass-%. Some bronze alloys provide even much higher contents of lead of 10 to 15 mass-%. Typically, lead is considered for improvement of machinability or castability. Beyond this purpose lead in brass and bronze alloys affects many more properties of manufacturing and application. During the shaping of the parts by means of hot or cold forming often the materials are strained close to their limits. Thanks to lead cracking is prevented during this process. Lead is also of great importance for the improvement of tribological systems. The surfaces of these systems are exposed to friction and wear. Lead is incorporated in the surface layers and supports the tribological system in their running-in process to achieve a steady state of friction and wear. Above all lead is unique because it forms no solid solution with copper or brass and forms no compounds with other typical copper alloying elements. The feasibility assessment of elements in order to substitute lead in brass or bronze alloys has to be done for each alloy and application individually. In oil-hydraulic applications as bushings, slippers or distributor plates, lead-free alloys must fulfil different profiles of requirements, depending on the conditions of manufacturing and application. The requirements do not only include mechanical strength, formability and thermal strength, but also fatigue strength, low friction and high wear resistance and lubricant compatibility. Consequently, the substitution of lead in brass and bronze alloys for application in oil-hydraulics is a challenging task. This does not only apply for the requirements for machining and forming, but particularly for the need of the new alloys to function under wear, friction and corrosion. Examples are given for how these challenges of new lead-free special brass alloys can be met in bushings (machining, friction properties), slippers (forming, strength) and distributor plates (fatigue strength) for axial piston pumps. Further on, new lead-free special brass alloys for contact with environmentally compatible lubricants are presented. All these examples show that there is not the one and only lead-free alloy for applications in oil-hydraulics. In fact, every application requires a different alloy which is composed
and processed individually to meet the specific demands.
|
14 |
A study into forces and moments acting on the swash plate of an axial piston pump using a novel approach to reduce pressure and flow pulsations.Naik, Pratin J., Seeniraj, Ganesh K., Chandran, Ram S. 25 June 2020 (has links)
In hydraulic pumps, typically in axial piston pumps, reduction of pressure and flow ripples was attempted by providing relief grooves and pre-compression for noise reduction. Pre-compression is normally achieved by using the dead space between pump ports in the valve plate. Also valve plate profile modification is required, if system operating conditions such as pump output pressure and flowrate change, to maintain optimum operating conditions for reduced pressure/flow ripple. An earlier simulation study confirmed effectiveness of varying dead centre position to reduce pressure and flow ripples. A specifically designed mechanism, outlined in the earlier work, achieves this goal by varying the dead centre position of the pump swash plate. This study reports on the findings of the effect of varying dead centre position and groove configurations on forces and moments acting on the swash plate for various operating conditions. The simulation model cited in the earlier work was used in this study. This information is vital for the design of an actuating mechanism to vary dead centre position of a pump valve plate. These simulations were run using MATLAB/Simulink and S-functions. Results of this study are promising.
|
15 |
An Investigation of Cavitation Phenomena in Axial Piston Machines Through Experimental Study and Simulated Scaling EffectsHannah Mcclendon Boland (16615293) 19 July 2023 (has links)
<p> </p>
<p>Cavitation is one of the most common causes of failures in axial piston machines. Due to the detrimental effects that cavitation has on unit performance, it is of important consideration both in the design of new units and in defining the operational limits of existing market products. The work in this thesis aimed to contribute to the current knowledge in both areas, with a focus on design considerations with respect to cavitation scalability, and on operating conditions by measuring cavitation severity under separate and combined inciting parameters. Though the application of unit scaling is common in industry for the design of pump families, there have been no comprehensive attempts to quantify whether cavitation in fluid power units may be adequately accounted for in published scaling laws. In this thesis, the scalability of cavitation phenomena was examined through a CFD scaling study performed using a modified version of the Full Cavitation Model. Results indicate that linear scaling is consistent in maintaining volumetric efficiency performance within 1% across scaled units up to eight times larger or smaller than the baseline. However, the gas and vapor volume distributions vary significantly between scaled units, due largely to the linear non-scalability of fluid inertia and turbulent factors. Physical exchange between phases within a working fluid was shown to be time-dependent, such that the scaled-down unit exhibits bubble collapse rates up to 30% and 150% greater than the baseline and scaled-up units, respectfully. Considering these effects, the presented work demonstrates a potential for increased cavitation damage area when downscaling a unit and reduced risk in upscaling, despite the scaling law being a reliable indicator for volumetric efficiency. </p>
<p>To define a more complete study of cavitation under a variety of operating conditions and inciting parameters, this a new experimental procedure and testing circuit was proposed with focus on repeatability by controlled pressure drops and preliminary quantification of inlet fluid quality. By measuring cavitation conditions under pressure starvation, incomplete filling, and combinations thereof, the direct effect of different inception methods on unit performance was shown to be readily identifiable. Through visualization of the inlet flow, reduction in inlet pressure levels was correlated to fluid cloudiness levels and bubble size, with transparency loss at 0.0 bar<sub>g</sub> and transition from bubbly to plug flow at -0.4 bar<sub>g</sub>. Incomplete filling-induced cavitation was also shown to be detectable by inlet flow conditions, with a distinct change in bubble coalescence rate when operating under shaft speeds greater than or equal to fill speed for a given inlet pressure. </p>
|
Page generated in 0.0417 seconds