• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • Tagged with
  • 5
  • 5
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Micromechanical modelling of unidirectional composites subjected to external and internal loadings

Nedele, Martin Rolf January 1996 (has links)
No description available.
2

Statistical Analysis of a Three-dimensional Axial Strain and Axial-shear Strain Elastography Algorithm

Li, Mohan 2011 August 1900 (has links)
Pathological phenomena often change the mechanical properties of the tissue. Therefore, estimation of tissue mechanical properties can be of clinical importance. Ultrasound elastography is a well-established strain estimation technique. Until recently, mainly 1D elastography algorithms have been developed. A few 2D algorithms have also been developed in the past. Both of these two types of technique ignore the tissue motion in the elevational direction, which could be a significant source of decorrelation in the RF data. In this thesis, a 3D elastography algorithm that estimates all the three components of tissue displacement is implemented and tested statistically. In this research, displacement fields of mechanical models are simulated. RF signals are then generated based on these displacement fields and used as the input of elastography algorithms. To evaluate the image quality of elastograms, absolute error, SNRe, CNRe and CNRasse are computed. The SNRe, CNRe and CNRasse values are investigated not only under different strain conditions, but also in different frame locations, which forms 3D strain filters. A statistical comparison between image qualities of the 3D technique and 2D technique is also provided. The results of this study show that the 3D elastography algorithm outperforms the 2D elastography algorithm in terms of image quality and robustness, especially under high strain conditions. This is because that the 3D algorithm estimates the elevational displacement, while the 2D technique only estimates the axial and lateral deformation. Since the elevational displacement could be an important source for the decorrelation in the RF data, the 3D technique is more effective and robust compared with the 2D technique.
3

Multi-scale studies of particulate-continuum interface systems under axial and torsional loading conditions

Martinez, Alejandro 07 January 2016 (has links)
The study of the shear behavior of particulate (soil) – continuum (man-made material) interfaces has received significant attention during the last three decades. The historical belief that the particulate – continuum interface represents the weak link in most geotechnical systems has been shown to be incorrect for many situations. Namely, prescribing properties of the continuum material, such as its surface roughness and hardness, can result in interface strengths that are equal to the contacting soil mass internal shear strength. This research expands the engineering implications of these findings by studying the response of interface systems in different loading conditions. Specifically, the axial and torsional shear modes are studied in detail. Throughout this thesis it is shown that taking an engineering approach to design the loading conditions induced to the interface system can result in interface strengths that exceed the previously considered limiting shear strength of the contacting soil. Fundamental experimental and numerical studies on specimens of different types of sand subjected to torsional and axial interface shear highlighted the inherent differences of these processes. Specifically, micro-scale soil deformation measurements showed that torsional shear induces larger soil deformations as compared to axial shear, as well as complex volume-change tendencies consisting of dilation and contraction in the primary and secondary shear zones. Studies on the global response of torsional and axial shear tests showed that they are affected differently by soil properties such as particle angularity and roughness. This difference in global behavior highlights the benefits of making systems that transfer load to the contacting soil in different manners available for use in geotechnical engineering. Discrete Element Modeling (DEM) simulations allowed for internal information of the specimens to be studied, such as their fabric and shear-induced loading conditions. These findings allowed for the development of links between the measured micro-scale behavior and the observed global-scale response. The understanding of the behavior of torsional and axial interfaces has allowed provides a framework for the development of enhanced geotechnical systems and applications. The global response of torsional shear found to induce larger cyclic contractive tendencies within the contacting soil mass. Therefore, this shear mode is more desirable than the conventional axial shear for the study of phenomena that depend on soil contractive behavior, such as liquefaction. A study on the influence of surface roughness form revealed that surfaces with periodic profiles of protruding elements that prevent clogging are capable of mobilizing interface friction angles that are 20 to 60% larger than the soil friction angle. These findings have direct implications in engineering design since their implementation can result in more resilient and sustainable geotechnical systems.
4

Analytical Examination Of Performance Limits For Shear Critical Reinforced Concrete Columns

Erguner, Kamil 01 November 2009 (has links) (PDF)
Most of the older reinforced concrete (RC) buildings have columns that are deficient when the current code requirements are considered. Therefore, performance of the columns determines the performance of the structure under the effects of earthquake induced lateral loads. It is recognized that no provision is proposed in TEC2007 to estimate the failure type called flexure-shear. Behavior of columns having probability of failing in flexure-shear failure mode is mostly underestimated by TEC2007 procedures. In addition, failure type classification of columns performed according to the linear and nonlinear procedures of TEC2007 needs to be examined with respect to the test results to cover all failure types including flexure-shear failure in order to lead the engineers develop economical and realistic retrofit solutions. In this study, different methods are explored to obtain reliable estimates for the performance of code deficient shear critical RC columns. Special considerations are given to Axial-Shear-Flexure interaction (ASFI) approach due to its mechanical background. After examination of different approaches, ASFI method with proposed modifications was selected as the most reliable model and lateral load-displacement analyses were performed on a database of shear critical columns. Findings were compared with the estimations of the nonlinear procedure given in Turkish Earthquake Code (TEC2007) for database columns. In addition, drift capacity equations and simplified safe drift capacity equations are proposed in light of statistical studies on the selected column specimens. In the last part of the study, performance evaluation of columns according to nonlinear procedures of FEMA 356, TEC2007, ASCE/SEI 41 update supplement, and EUROCODE 8 were conducted.
5

Seismic Response of Deep Circular Tunnels Subjected to P- and S-waves

Chatuphat Savigamin (12451497) 25 April 2022 (has links)
<p>Most of the attention to the seismic performance of tunnels has been devoted to shear waves propagating in a direction perpendicular to the tunnel axis, with motion perpendicular to the tunnel axis, causing the so-called “ovaling or racking response”. Body waves, however, can travel through the ground and intersect the tunnel at different angles, thus inducing a complex seismic response that requires a comprehensive understanding of all modes of deformation. This study provides analytical solutions to capture the behavior of the liner and the surrounding ground, for a deep circular tunnel subjected to body waves, for all five possible modes of deformation: (i) axial compression-extension; (ii) transverse compression-extension; (iii) ovaling; (iv) axial shear; and (v) axial bending or snaking. The main assumptions used to derive the analytical solutions include: (i) the tunnel is deep and very long and has a circular cross section; (ii) the ground and the support are homogeneous and isotropic, and their response remains elastic; (iii) the interface between the ground and the liner is either no-slip or full-slip; (iv) the pseudo-static approach, i.e. inertia forces can be neglected, is acceptable to estimate seismic deformations; (v) for the transverse compression-extension and ovaling deformation modes, plane strain conditions in the direction of the tunnel axis apply at any cross section; and (vi) for the axial compression-extension and axial bending deformation modes, the wavelength of the seismic motions is much larger than the tunnel radius. Two and three-dimensional numerical simulations with the finite element codes ABAQUS, for static drained/undrained loading and dynamic drained loading conditions, and MIDAS GTS NX, for dynamic undrained loading conditions, are carried out to validate the analytical solutions and further investigate the seismic response of the tunnel. All the comparison results show good agreement between the analytical and numerical solutions.</p> <p>Dynamic amplification effects on the tunnel cross section are studied for the axial compression-extension, transverse compression-extension, and axial bending deformation modes, through a set of dynamic time-history models where the input frequency of the far-field seismic motion is changed. The results reveal the limits of the analytical solutions, in the form of minimum wavelength-to-tunnel diameter (/D) ratios such that the errors are less than twenty percent, including: (i) 25 (drained) and 20 (undrained) for axial compression-extension; (ii) 25 (drained) and 12.5 (undrained) for transverse compression- extension; and (iii) 7.5 (unsupported tunnel), 7.5 (supported tunnel with no-slip interface), and 12.5 (supported tunnel with full-slip interface) for axial bending or snaking. These ratios are also the limits of applicability of quasi-static (instead of dynamic) numerical simulations to estimate the seismic behavior of the liner and the surrounding ground.</p>

Page generated in 0.2245 seconds