• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 16
  • 10
  • 4
  • 2
  • Tagged with
  • 41
  • 41
  • 22
  • 22
  • 17
  • 16
  • 16
  • 13
  • 10
  • 10
  • 9
  • 8
  • 8
  • 8
  • 7
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Traumatic brain injury with particular reference to diffuse traumatic axonal injury subpopulations

Al-Hasani, Omer Hussain January 2011 (has links)
Traumatic brain injury (TBI) remains an important cause of morbidity and mortality within society. TBI may result in both focal and diffuse brain injury. Diffuse traumatic axonal injury (TAI) is an important pathological substrate of TBI, and can be associated with a range of clinical states, ranging from concussion through to death, the clinical severity being associated with a number of factors related to the injury. A retrospective study was conducted using 406 cases with TBI, from the archive of the Academic Department of Pathology (Neuropathology) University of Edinburgh, during the period from1982 and 2005. This cohort was sequential and provided a unique description of the range of pathologies associated with fatal TBI within the Edinburgh catchment area. All the data was collected on a proforma and analysed to provide a description of the incidence in the injury patterns among the Edinburgh cohort. This cohort was then used to provide cases to try and critically assess the mechanisms of axonal injury in TBI. A study was undertaken to investigate TAI in an experimental model of non-impact head injury in a gyrencephalic mammalian model (piglet model) and in human autopsy materials using immunohistochemical analysis of a range of antibodies, and to define the distribution of axonal injury with flow and neurofilament markers in TAI. A further objective was to examine the expression of β-APP as an indicator of impaired axonal transport, three neurofilament markers targeting NF-160, NF-200, and the phosphorylated form of the neurofilament heavy chain (NFH), in different anatomical regions of piglet and human brains. The double immunofluorescence labelling method was then employed to investigate the hypothesis of co-localisation between β-APP and each one of the previous neurofilament markers. The animal studies showed significant differences in NF-160 between sham and injured 3-5 days old piglet cases (6 hour survival) and between 3-5 days sham and injured, when stained with SMI-34 antibody. In 4 weeks old piglet cases (6 hour survival), immunoreactivity of β-APP was significantly higher in injured than control. No other significant differences for any of the antibodies were noted, based on age, velocity, and survival time. Human results suggested that the brainstem had a higher level of β-APP and NF-160 than the corpus callosum and internal capsule. Co-localisation of β-APP with NFs was not a consistent feature of TAI in piglet and human brains, suggesting that markers of impaired axonal transport and neurofilament accumulation are sensitive to TAI, but may highlight different populations involved in the evolution of TAI.
2

Altered Transport Velocity of Axonal Mitochondria in Retinal Ganglion Cells After Laser-Induced Axonal Injury In Vitro / レーザーによる軸索障害後の網膜神経節細胞のミトコンドリアの軸索内輸送速度の変化

Yokota, Satoshi 23 March 2017 (has links)
京都大学 / 0048 / 新制・課程博士 / 博士(医学) / 甲第20244号 / 医博第4203号 / 新制||医||1020(附属図書館) / 京都大学大学院医学研究科医学専攻 / (主査)教授 髙橋 良輔, 教授 伊佐 正, 教授 井上 治久 / 学位規則第4条第1項該当 / Doctor of Medical Science / Kyoto University / DFAM
3

Erythropoietin improves motor and cognitive deficit, axonal pathology, and neuroinflammation in a combined model of diffuse traumatic brain injury and hypoxia, in association with upregulation of the erythropoietin receptor

Hellewell, Sarah, Yan, Edwin, Alwis, Dasuni, Bye, Nicole, Morganti-Kossmann, M. January 2013 (has links)
BACKGROUND:Diffuse axonal injury is a common consequence of traumatic brain injury (TBI) and often co-occurs with hypoxia, resulting in poor neurological outcome for which there is no current therapy. Here, we investigate the ability of the multifunctional compound erythropoietin (EPO) to provide neuroprotection when administered to rats after diffuse TBI alone or with post-traumatic hypoxia.METHODS:Sprague-Dawley rats were subjected to diffuse traumatic axonal injury (TAI) followed by 30minutes of hypoxic (Hx, 12% O2) or normoxic ventilation, and were administered recombinant human EPO-alpha (5000IU/kg) or saline at 1 and 24hours post-injury. The parameters examined included: 1) behavioural and cognitive deficit using the Rotarod, open field and novel object recognition tests / 2) axonal pathology (NF-200) / 3) callosal degradation (hematoxylin and eosin stain) / 3) dendritic loss (MAP2) / 4) expression and localisation of the EPO receptor (EpoR) / 5) activation/infiltration of microglia/macrophages (CD68) and production of IL-1beta.RESULTS:EPO significantly improved sensorimotor and cognitive recovery when administered to TAI rats with hypoxia (TAI+Hx). A single dose of EPO at 1hour reduced axonal damage in the white matter of TAI+Hx rats at 1day by 60% compared to vehicle. MAP2 was decreased in the lateral septal nucleus of TAI+Hx rats / however, EPO prevented this loss, and maintained MAP2 density over time. EPO administration elicited an early enhanced expression of EpoR 1day after TAI+Hx compared with a 7-day peak in vehicle controls. Furthermore, EPO reduced IL-1beta to sham levels 2hours after TAI+Hx, concomitant to a decrease in CD68 positive cells at 7 and 14days.CONCLUSIONS:When administered EPO, TAI+Hx rats had improved behavioural and cognitive performance, attenuated white matter damage, resolution of neuronal damage spanning from the axon to the dendrite, and suppressed neuroinflammation, alongside enhanced expression of EpoR. These data provide compelling evidence of EPO's neuroprotective capability. Few benefits were observed when EPO was administered to TAI rats without hypoxia, indicating that EPO's neuroprotective capacity is bolstered under hypoxic conditions, which may be an important consideration when EPO is employed for neuroprotection in the clinic.
4

Structural Alterations to the Axon Initial Segment Following Diffuse Axonal Injury as a Consequence of Age

Behl, William 01 May 2014 (has links)
An epidemiological shift towards the elderly population has occurred in traumatic brain injury (TBI). Age is believed to be one of the strongest prognostic indicators following TBI. Diffuse axonal injury (DAI), a prevalent feature of TBI, is believed to be the primary cause for much of the morbidity and mortality associated with TBI. The pathobiology associated with DAI is believed to occur in response to the primary injury in a progressive, secondary fashion. Though the injury mechanisms behind DAI have been shown to occur at numerous sites along the axon, recent work suggests that the axon initial segment (AIS) may show specific vulnerability to DAI and be the primary site of axonal pathobiogenesis. Despite its established predilection for injury, the mechanisms responsible for the pathobiology remain largely unclear – particularly with regard to the age. The current study aims to shed light on the mechanisms responsible for injury by investigating structural alterations to the AIS following DAI in young and old mice. To address this question we have used a central fluid percussion injury (cFPI) model to induce mild DAI on 22-month old aged mice and 3-month old young mice at 3-hours and 24-hours survival time. Double-labeling fluorescent immunohistochemistry was used to demonstrate colocalization of ankG, an AIS domain marker, and APP, a marker used to establish traumatic axonal injury (TAI). Qualitative-quantitative observations based on confocal microscopy demonstrated an increase in APP accumulation associated with AIS over time, post-injury. Initial segments displaying APP association consistently showed a significant overall shortening in young and aged groups at both survival times. No significant difference in AIS length was detected between AIS populations of young and aged mice. Qualitative findings, however, suggest that AIS degradation could be more profound with age, which could have implications on neuronal outcome.
5

The characterization of the anterograde and retrograde consequences of traumatic axonal injury in a mouse model of diffuse brain injury

Greer, John E 30 September 2011 (has links)
Traumatic axonal injury (TAI) is a consistent feature of (TBI) and is responsible for much of its associated morbidity. TAI is now recognized to result from progressive/secondary axonal injury, though much remains unknown in regards to the pathobiology and the long-term consequences of axonal injury. TAI has been described in the perisomatic domain, located within the neocortex following mild TBI, and within this domain has been linked to neuronal recovery, not neuronal cell death in the acute setting. Due to technical limitations, our understanding of the long-term fate of this neuronal population and the mechanisms responsible for permitting neuronal survival, recovery and axon regeneration following injury are unknown. The studies presented in this thesis are centered upon the hypothesis that injury within the perisomatic domain is unique, and may allow for enhanced neuronal recovery and axonal regeneration. To address many of these questions, we have utilized a novel model of diffuse brain injury in mice, allowing for the use of transgenic mice to overcome previous limitations in the study of TAI. To address this hypothesis, we first assessed the impact of genetic deletion of cyclophilin D (CypD), a regulator of the mitochondrial permeability transition pore (mPTP), upon TAI within the perisomatic domain. Via this approach it was determined that CypD deletion reduced the number of injured axons by ~50%, indicating that CypD and mPTP formation contribute to TAI in the perisomatic domain. Next, using a fluorescent-based approach, we assessed the temporospatial events associated with TAI, acutely. Here it was determined that the axon initial segment (AIS) is uniquely susceptible to TAI following mild TBI (mTBI) and injury within this domain progresses rapidly to axon disconnection. Last we assessed the long-term fate of axotomized neurons and their associated axonal processes. We report that over a chronic time frame, TAI induces no overt cell death, instead results in significant neuronal atrophy with the simultaneous activation of a somatic program of axon regeneration and recovery of the remaining axonal processes. Taken together, the findings of this work reveal that TAI results in a unique axonal injury that results in a persistent axon regenerative attempt.
6

The Effect of Traumatic Brain Injury on Expression Levels of Ankyrin-G in the Corpus Callosum and Cerebral Cortex

Vanderveer, Andrew S. 01 January 2005 (has links)
The ankyrins comprise a family of proteins serving as components of the membrane cytoskeleton, and participate in a diverse set of associations with multiple binding partners including the cytoplasmic domains of transporters, ion channels, some classes of receptors, and cell adhesion proteins. Moreover, evidence is accumulating that ankyrin participates in defining functionally distinct subcellular regions. The complex functional and structural roles of ankyrins indicate they are likely to play essential roles in the pathology of traumatic axonal injury. The current study examined changes in ankyrin-G expression following a moderate central fluid percussion injury administered to adult rats. At 1d, 3d, and 7d postinjury (or following a sham control injury), protein levels of ankyrin-G in the corpus callosum and cerebral cortex were assessed using Western Blot analysis. Three immunopositive bands were identified in both brain regions as 220,212, and 75 kD forms of ankyrin-G. Time-dependent changes in ankyrin-G were observed in the corpus callosum. At 1d injury-induced elevations were observed in the callosal 220 kD (+147% relative to sham levels) and in the 212 kD (+73%) forms of ankyrin-G, but in both cases the expression decreased to control levels by 3d and 7d. In contrast, the 75 kD form showed moderate increases at 1d postinjury, but was significantly below control levels at 3d (-54%) and at 7d (-41%). Ankyrin-G expression in the cerebral cortex was only slightly affected by the injury, with a significant decrease in the `220 kD form occurring between 1d and 3d. These data suggest that the 220 and 212 kD changes probably represent postinjury proteolytic fragments derived from intact ankyrin-G isoforms of 480 andor 270 kD, while the 75 kD effects are likely breakdown products of intact 190 kD ankyrin-G. These results were discussed as they relate to prior findings of differential vulnerabilities of callosal myelinated and unmyelinated axons to injury. In this context, the 220,212 kD changes may reflect pathology within myelinated axons, and alterations to the 75 kD form may reflect more persistent pathology affecting unmyelinated callosal fibers.
7

STRUCTURAL AND FUNCTIONAL ALTERATIONS IN NEOCORTICAL CIRCUITS AFTER MILD TRAUMATIC BRAIN INJURY

Vascak, Michal 01 January 2017 (has links)
National concern over traumatic brain injury (TBI) is growing rapidly. Recent focus is on mild TBI (mTBI), which is the most prevalent injury level in both civilian and military demographics. A preeminent sequelae of mTBI is cognitive network disruption. Advanced neuroimaging of mTBI victims supports this premise, revealing alterations in activation and structure-function of excitatory and inhibitory neuronal systems, which are essential for network processing. However, clinical neuroimaging cannot resolve the cellular and molecular substrates underlying such changes. Therefore, to understand the full scope of mTBI-induced alterations it is necessary to study cortical networks on the microscopic level, where neurons form local networks that are the fundamental computational modules supporting cognition. Recently, in a well-controlled animal model of mTBI, we demonstrated in the excitatory pyramidal neuron system, isolated diffuse axonal injury (DAI), in concert with electrophysiological abnormalities in nearby intact (non-DAI) neurons. These findings were consistent with altered axon initial segment (AIS) intrinsic activity functionally associated with structural plasticity, and/or disturbances in extrinsic systems related to parvalbumin (PV)-expressing interneurons that form GABAergic synapses along the pyramidal neuron perisomatic/AIS domains. The AIS and perisomatic GABAergic synapses are domains critical for regulating neuronal activity and E-I balance. In this dissertation, we focus on the neocortical excitatory pyramidal neuron/inhibitory PV+ interneuron local network following mTBI. Our central hypothesis is that mTBI disrupts neuronal network structure and function causing imbalance of excitatory and inhibitory systems. To address this hypothesis we exploited transgenic and cre/lox mouse models of mTBI, employing approaches that couple state-of-the-art bioimaging with electrophysiology to determine the structural- functional alterations of excitatory and inhibitory systems in the neocortex.
8

"Avaliação do dano neuronal e axonal tardio, secundário ao traumatismo craniencefálico moderado e grave, por técnicas quantitativas em ressonância magnética" / Evaluation of delayed neuronal and axonal damage, secondary to moderate and severe traumatic brain injury, using quantitative magnetic resonance techniques.

Mamere, Augusto Elias 05 August 2005 (has links)
O traumatismo craniencefálico (TCE) fechado é, classicamente, um modelo de lesão neuronal e axonal monofásica, onde a destruição do parênquima, incluindo neurônios e células gliais, ocorre principalmente no momento do trauma, seguida pela degeneração Walleriana anterógrada e retrógrada nos dias subseqüentes. Há evidências de progressão da perda neuronal e axonal na fase tardia após o trauma, observada principalmente pela evolução da atrofia cerebral, secundária a vários fatores, incluindo a apoptose neuronal. Com o objetivo de testar a hipótese de que as técnicas quantitativas em ressonância magnética (RM) permitem identificar, de modo não invasivo, as variáveis biológicas que estimam a perda neuronal e axonal no cérebro relacionadas ao TCE moderado e grave e à lesão axonal difusa, na fase tardia, foram avaliados 9 pacientes, sendo 5 do sexo masculino e 4 do sexo feminino, com idades variando de 11 a 28 anos (média de 21,1 anos), que foram vítimas de TCE moderado ou grave (Escala de Coma de Glasgow menor que 12 na admissão hospitalar após o TCE) e que tiveram boa recuperação. O tempo médio entre o trauma e o exame de ressonância magnética foi de 3,1 anos (± 0,5 anos). Foram utilizados os índices ventrículo-cerebrais bifrontal (IVCF) e bicaudado (IVCC), a medida do tempo de relaxação T2, o índice de transferência de magnetização (MTR), o coeficiente de difusão aparente (ADC) e a espectroscopia de prótons multi-voxel, com o cálculo dos índices metabólicos N-acetilaspartato/creatina (NAA/Cre) e colina/creatina (Cho/Cre). Foram estudados a substância branca (SB) frontal e parietal bilateralmente, o joelho e o esplênio do corpo caloso (CC) e a substância cinzenta (SC). As médias dos valores medidos foram comparadas às de um grupo controle formado por 9 pessoas sadias, pareadas pela idade e sexo. Observou-se aumento estatisticamente significativo (p ≤ 0,05) do IVCF e do IVCC nos pacientes, devido ao aumento ventricular secundário à atrofia subcortical; aumento no tempo de relaxação T2 na SB e no CC, que reflete o aumento da concentração de água por provável perda axonal e gliose; aumento do ADC e redução do MTR na SB e no CC, que demonstram lesão das fibras axonais mielinizadas, e redução do índice NAA/Cre no CC, indicando perda axonal. Não houve diferença estatisticamente significativa nas medidas realizadas na SC e nem no índice Cho/Cre (p › 0,05). Os resultados encontrados mostram que as técnicas quantitativas em RM foram capazes de detectar, de modo não invasivo, o dano neuronal e axonal na substância branca e no corpo caloso de cérebros humanos, secundário ao TCE moderado e grave. / Closed traumatic brain injury (TBI) is a classic model of monophasic neuronal and axonal injury, where tissue damage mainly occurs at the moment of trauma, followed by anterograde and retrograde Wallerian degeneration in the subsequent days. There are some evidences of delayed progression of the neuronal and axonal loss after TBI, mainly shown by gradual development of cerebral atrophy, due to many factors, including neuronal apoptosis. For the purpose of testing the hypothesis that quantitative magnetic resonance techniques are able to assess the biological variables which estimate neuronal and axonal loss in brain, related to moderate or severe TBI and diffuse axonal injury, nine patients (age range 11 – 28 years; mean age 21,1 years; 5 male and 4 female), who sustained a moderate or severe TBI (initial Glasgow Coma Scale less than 12), with good recovery, were evaluated in a mean of 3,1 years after trauma (± 0,5 year). The following techniques were applied: bicaudate (CVIC) and bifrontal (CVIF) cerebroventricular indexes; T2 relaxation time measurement (T2 relaxometry); magnetization transfer ratio (MTR); apparent diffusion coefficient (ADC); multivoxel proton magnetic resonance spectroscopy, using N-acetylaspartate/creatine (NAA/Cre) and choline/creatine (Cho/Cre) ratios; measured in the frontal and parietal white matter (WM) of both cerebral hemispheres, in the genu and splenium of the corpus callosum (CC) and in the gray matter (GM). The results were compared with those of a control group constituted by 9 healthy volunteers with a matched age and sex distribution. The CVIC and CVIF mean values were significantly increased (p ≤ 0,05) in patients due to ventricular enlargement secondary to subcortical atrophy; an increase in T2 relaxation time was observed in the WM and CC, reflecting an enhancement in water concentration, probably secondary to axonal loss and gliosis; increased ADC mean values and reduced MTR mean values were found in the WM and CC, showing damage in the myelinated axonal fibers; and decreased NAA/Cre ratio mean values in the CC, indicating axonal loss. No significant differences were observed in the mean values measured at the GM or in the Cho/Cre ratio mean values (p › 0,05). These quantitative magnetic resonance techniques were able to non-invasively demonstrate the neuronal and axonal damage in the WM and CC of human brains, secondary to moderate or severe TBI.
9

A study on the biomechanics of axonal injury

Anderson, Robert William Gerard January 2000 (has links)
The current focus of research efforts in the area of the biomechanics of traumatic brain injury is the development of numerical (finite element) models of the human head. A validated numerical model of the human head may lead to better head injury criteria than those used currently in crashworthiness studies. A critical step in constructing a validated finite element model of the head is determining the mechanical threshold, should it exist, for various types of injury to brain tissue. This thesis describes a biomechanical study of axonal injury in the anaesthetised sheep. The study used the measurements of the mechanics of an impact to the living sheep, and a finite element model of the sheep skull and brain, to investigate the mechanics of the resulting axonal injury. Sheep were subjected to an impact to the left lateral region of the skull and were allowed to survive for four hours after the impact. The experiments were designed specifically with the numerical model in mind; sufficient data were collected to allow the mechanics of the impact to be faithfully reproduced in the numerical model. The axonal injury was identified using immunohistological methods and the injury was mapped and quantified. Axonal injury was produced consistently in all animals. Commonly injured regions included the sub-cortical and deep white matter, the hippocampi and the margins of the lateral ventricles. The degree of injury was closely related to the peak impact force and to kinematic measurements, particularly the peak change in linear and angular velocity. There was significantly more injury in animals receiving fractures. A three-dimensional finite element model of the sheep skull and brain was constructed to simulate the dynamics of the brain during the impact. The model was used to investigate different regimes of material properties and boundary conditions, in an effort to produce a realistic model of the skull and brain. Model validation was attempted by comparing pressure measurements in the experiment with those calculated by the model. The distribution of axonal injury was then compared with the output of the finite element model. The finite element model was able to account for approximately thirty per cent of the variation in the distribution and extent of axonal injury, using von Mises stress as the predictive variable. Logistic regression techniques were used to construct sets of curves which related the extent of injury, to the predictions of the finite element model, on a regional basis. The amount of observable axonal injury in the brains of the sheep was clearly related to the severity of the impact, and was related to the predictions of a finite element model of the impact. Future improvements to the fidelity of the finite element model may improve the degree to which the model can explain the variation in injury throughout the brain of the animal and variations between animals. This thesis presents results, and a methodological framework, that may be used to further our understanding of the limits of human endurance, in the tolerance of the brain to head impact. All experiments reported herein conformed with the Australian Code of Practice for the Care and Use of Animals for Scientific Purposes. / Thesis (Ph.D.)--Mechanical Engineering, 2000.
10

"Avaliação do dano neuronal e axonal tardio, secundário ao traumatismo craniencefálico moderado e grave, por técnicas quantitativas em ressonância magnética" / Evaluation of delayed neuronal and axonal damage, secondary to moderate and severe traumatic brain injury, using quantitative magnetic resonance techniques.

Augusto Elias Mamere 05 August 2005 (has links)
O traumatismo craniencefálico (TCE) fechado é, classicamente, um modelo de lesão neuronal e axonal monofásica, onde a destruição do parênquima, incluindo neurônios e células gliais, ocorre principalmente no momento do trauma, seguida pela degeneração Walleriana anterógrada e retrógrada nos dias subseqüentes. Há evidências de progressão da perda neuronal e axonal na fase tardia após o trauma, observada principalmente pela evolução da atrofia cerebral, secundária a vários fatores, incluindo a apoptose neuronal. Com o objetivo de testar a hipótese de que as técnicas quantitativas em ressonância magnética (RM) permitem identificar, de modo não invasivo, as variáveis biológicas que estimam a perda neuronal e axonal no cérebro relacionadas ao TCE moderado e grave e à lesão axonal difusa, na fase tardia, foram avaliados 9 pacientes, sendo 5 do sexo masculino e 4 do sexo feminino, com idades variando de 11 a 28 anos (média de 21,1 anos), que foram vítimas de TCE moderado ou grave (Escala de Coma de Glasgow menor que 12 na admissão hospitalar após o TCE) e que tiveram boa recuperação. O tempo médio entre o trauma e o exame de ressonância magnética foi de 3,1 anos (± 0,5 anos). Foram utilizados os índices ventrículo-cerebrais bifrontal (IVCF) e bicaudado (IVCC), a medida do tempo de relaxação T2, o índice de transferência de magnetização (MTR), o coeficiente de difusão aparente (ADC) e a espectroscopia de prótons multi-voxel, com o cálculo dos índices metabólicos N-acetilaspartato/creatina (NAA/Cre) e colina/creatina (Cho/Cre). Foram estudados a substância branca (SB) frontal e parietal bilateralmente, o joelho e o esplênio do corpo caloso (CC) e a substância cinzenta (SC). As médias dos valores medidos foram comparadas às de um grupo controle formado por 9 pessoas sadias, pareadas pela idade e sexo. Observou-se aumento estatisticamente significativo (p ≤ 0,05) do IVCF e do IVCC nos pacientes, devido ao aumento ventricular secundário à atrofia subcortical; aumento no tempo de relaxação T2 na SB e no CC, que reflete o aumento da concentração de água por provável perda axonal e gliose; aumento do ADC e redução do MTR na SB e no CC, que demonstram lesão das fibras axonais mielinizadas, e redução do índice NAA/Cre no CC, indicando perda axonal. Não houve diferença estatisticamente significativa nas medidas realizadas na SC e nem no índice Cho/Cre (p › 0,05). Os resultados encontrados mostram que as técnicas quantitativas em RM foram capazes de detectar, de modo não invasivo, o dano neuronal e axonal na substância branca e no corpo caloso de cérebros humanos, secundário ao TCE moderado e grave. / Closed traumatic brain injury (TBI) is a classic model of monophasic neuronal and axonal injury, where tissue damage mainly occurs at the moment of trauma, followed by anterograde and retrograde Wallerian degeneration in the subsequent days. There are some evidences of delayed progression of the neuronal and axonal loss after TBI, mainly shown by gradual development of cerebral atrophy, due to many factors, including neuronal apoptosis. For the purpose of testing the hypothesis that quantitative magnetic resonance techniques are able to assess the biological variables which estimate neuronal and axonal loss in brain, related to moderate or severe TBI and diffuse axonal injury, nine patients (age range 11 – 28 years; mean age 21,1 years; 5 male and 4 female), who sustained a moderate or severe TBI (initial Glasgow Coma Scale less than 12), with good recovery, were evaluated in a mean of 3,1 years after trauma (± 0,5 year). The following techniques were applied: bicaudate (CVIC) and bifrontal (CVIF) cerebroventricular indexes; T2 relaxation time measurement (T2 relaxometry); magnetization transfer ratio (MTR); apparent diffusion coefficient (ADC); multivoxel proton magnetic resonance spectroscopy, using N-acetylaspartate/creatine (NAA/Cre) and choline/creatine (Cho/Cre) ratios; measured in the frontal and parietal white matter (WM) of both cerebral hemispheres, in the genu and splenium of the corpus callosum (CC) and in the gray matter (GM). The results were compared with those of a control group constituted by 9 healthy volunteers with a matched age and sex distribution. The CVIC and CVIF mean values were significantly increased (p ≤ 0,05) in patients due to ventricular enlargement secondary to subcortical atrophy; an increase in T2 relaxation time was observed in the WM and CC, reflecting an enhancement in water concentration, probably secondary to axonal loss and gliosis; increased ADC mean values and reduced MTR mean values were found in the WM and CC, showing damage in the myelinated axonal fibers; and decreased NAA/Cre ratio mean values in the CC, indicating axonal loss. No significant differences were observed in the mean values measured at the GM or in the Cho/Cre ratio mean values (p › 0,05). These quantitative magnetic resonance techniques were able to non-invasively demonstrate the neuronal and axonal damage in the WM and CC of human brains, secondary to moderate or severe TBI.

Page generated in 0.0486 seconds