• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Beiträge zur Chemie von Nanodiamantpartikeln – Die 1,3-dipolare Cycloaddition auf modifizierten Diamantoberflächen / Contributions to the Chemistry of Diamond Nanoparticles – The 1,3 dipolar Cycloaddition on modified diamond surfaces

Lang, Daniel January 2013 (has links) (PDF)
Ausgangspunkt war die aus der Fulleren-Chemie bekannte Prato-Reaktion, bei welcher das Ylid in situ aus einer Aminosäure und einem Aldehyd generiert wird und anschließend mit den C=C-Bindungen des Fullerens reagiert. Diese Funktionalisierungsmethode wurde nun auf Detonationsnanodiamant übertragen. Um zusätzliche π-Bindungen auf der Oberfläche der Diamantteilchen zu schaffen, wurden diese i.Vak. bei 750 °C ausgeheizt (ND750). Für die Immobilisierung wurde die Aminosäure Sarcosin gewählt. Dodecanal und 2,4,6-Tris(hexadecyloxy)-benzaldehyd dienten jeweils als Reaktionspartner. Da bereits in früheren Studien gezeigt wurde, dass bei dieser Reaktion der Aldehyd selbst unspezifisch an den Diamanten binden kann und so möglicherweise Teile der Oberfläche für die spezifische Funktionalisierung blockiert, wurden für die weitere Betrachtung Azomethinylidvorstufen synthetisiert, die selbst nicht in der Lage sind, mit der Diamantoberfläche zu reagieren. Diesen Zweck erfüllten N-heterocyclische Iminiumbromide, die durch Umsetzung des jeweiligen Heteroaromaten mit Bromessigsäureethylester bzw. Bromacetonitril erhalten wurden. Alle Ylidvorstufen wurden in Gegenwart von NEt3 in situ zu den gewünschten Dipolen umgesetzt und auf Nanodiamant immobilisiert. Neben ND750 wurden auch oxidierter und unbehandelter Diamant (NDox bzw. NDunb) sowie Diamant, der bei 900 °C i.Vak. ausgeheizt wurde (ND900), als Substrat eingesetzt, um den Einfluss der Oberflächenterminierung und des Graphitisierungsgrades auf das Reaktionsverhalten zu studieren. Durch Raman- und IR-Spektroskopie wurde gezeigt, dass NDox sehr viele Carbonylgruppen und wenig C=C-Doppelbindungen auf seiner Oberfläche trägt. Durch das Ausheizen i.Vak wurden hingegen zusätzliche π-Bindungen erzeugt, die bei ND900 bereits ausgedehntere Bereiche mit sp2-Kohlenstoff bilden. Der Erfolg der Immobilisierung wurde IR-spektroskopisch nachgewiesen. Die Oberflächenbeladung aller hergestellten Diamantaddukte wurde thermogravimetrisch bestimmt. NDox immobilisierte unabhängig vom Reaktionspartner stets die wenigsten Moleküle auf seiner Oberfläche. Deren Terminierung wird von Carbonylgruppen dominiert, die grundsätzlich schlechtere Dipolarophile darstellen als C=C-Doppelbindungen. Die übrigen Diamantmaterialien NDunb, ND750 und ND900 ließen keine eindeutige Tendenz bezüglich ihrer Reaktionsfreudigkeit erkennen. Die Oberfläche des unbehandelten Diamanten NDunb besitzt sowohl Carbonylfunktionen als auch einzelne Bereiche graphitischen Kohlenstoffs. Diese konkurrieren vermutlich um die angebotenen Dipole, sodass die resultierenden Oberlächenbeladungen ihrer Konjugate in einem mittleren Wertebereich liegen. Durch das Ausheizen i.Vak. werden viele Carbonylgruppen unter Ausbildung weiterer C=C-Doppelbindungen von der Oberfläche entfernt. Bei 750 °C sind diese räumlich sehr beschränkt, stark gekrümmt und daher sehr reaktiv. Trotzdem erreichte ND750 selten eine Oberflächenbelegung, welche jene von NDunb übertrifft. Die π-Bindungen auf seiner Oberfläche sind in Fünf- und Sechsringe eingebaut, um die gekrümmte Struktur zu realisieren. Wahrscheinlich besteht für die Cycloaddition an Nanodiamant eine dem Fulleren C60 ähnliche Regioselektivität bezüglich der angegriffen Doppelbindung. Somit stehen nicht alle frisch erzeugten C=C-Bindungen für die Reaktion zur Verfügung. Bei 900 °C ist die Graphitisierung der Diamantoberfläche weiter fortgeschritten. Es entstehen nicht nur neue C=C-Bindungen, sondern bereits gebildete Kohlenstoffkappen beginnen zu koaleszieren, wobei ausgedehntere sp2-Bereiche mit geringerer Krümmung und somit verminderter Reaktivität entstehen. So nimmt die Oberflächenbeladung der meisten ND900-Konjugate nicht weiter zu. Wie aus den Ergebnissen dieser Arbeit hervorgeht, ist die Funktionalisierung von Nanodiamantpartikeln nicht trivial. Sowohl die Oberflächenbeschaffenheit des Diamantmaterials als auch die Struktur des eingesetzten Azomethinylids beeinflussen das Immobilisierungsverhalten. Die vorliegende Arbeit zeigt aber, dass die 1,3-dipolare Cycloaddition von Azomethinyliden eine nützliche Methode zur Funktionalisierung von Nanodiamantpartikeln ist. Sie ermöglicht des Weiteren die simultane Einführung mehrerer unterschiedlicher funktioneller Gruppen. Dies macht die untersuchte Reaktion zu einem wertvollen Werkzeug für die Herstellung funktionalisierter Nanodiamantmaterialien, z. B. für biomedizinische Anwendungen. / It is commonly known from the chemistry of fullerene C60 that these ylides, generated in situ by a decarboxylative condensation of an amino acid and an aldehyde, add to the C=C double bonds of the fullerene. In this work this kind of functionalization was transferred to nanodiamond particles. Prior to the reaction, the diamond particles were annealed in vacuo at 750 °C in order to establish additional π-bonds on their surface. The amino acid sarcosine was chosen for immobilization. Dodecanal and 2,4,6-tris(hexadecyloxy) benzaldehyde each served as the reactant. Earlier studies demonstrated that the aldehyde itself is able to bind nonspecifically to the diamond surface. Thus, ylide precursors unable to react directly with diamond had to be synthesized. N-heterocyclic iminium bromides served this purpose. They were obtained by the conversion of N-heteroaromatic compounds with bromo ethylacetate and bromo acetonitrile respectively. All ylide precursors were converted in situ to the desired 1,3-dipoles with NEt3 and grafted onto nanodiamond. This reaction was applied not only to ND750, but also to oxidized and pristine diamond (NDox and NDunb) as well as diamond, which was annealed in vacuo at 900 °C (ND900), in order to investigate how the termination and the degree of graphitization of the diamond surface affect the reaction behaviour. As shown by Raman and IR spectroscopy, NDox carries a lot of carbonyl functions and very few C=C bonds. On thermal annealing, additional π-bonds were created, which began to form extended sp2-areas on ND900. The various pre-treated starting materials were subjected to reactions with N-heterocyclic iminium salts. The successful immobilization was verified by IR spectroscopy. The surface loading values of all obtained diamond adducts were determined by thermogravimetric analyses. No matter which reagent was applied, NDox invariably displayed the fewest surface loadings in each course of reactions. This is due to the prevailing carbonyl surface groups. They are essentially poorer dipolarophiles than C=C double bonds. In terms of reactivity the other diamond starting materials NDunb, ND750 and ND900 did not exhibit a definite trend. The surface of the pristine diamond NDunb offers carbonyl groups as well as particular areas of graphitic carbons. They both compete for the applied dipoles and the corresponding diamond conjugates have moderate surface loading values . Annealing the diamond samples in vacuo removes the carbonyl groups and generates further C=C bonds instead. At 750 °C, these are spatially confined, strongly curved and thus highly reactive. Nevertheless, the surface loadings for ND750 rarely exceeded those of NDunb. The π-bonds on its surface are incorporated in five- and six-membered rings to accomplish the curved structure. Regarding the regioselectivity of the attacked double bond, it is possible to compare the cycloaddition on nanodiamond to the reaction on fullerene C60. That is the reason why not all freshly generated C=C bonds on the diamond are available for the reaction. At 900 °C, the graphitization of the diamond surface has further progressed. Not only are new C=C bonds formed, but the already established sp2-caps also begin to coalesce, whereby extended graphitic areas start to emerge. They are less curved and thus less reactive. So the surface loading of most ND900 conjugates does not increase. The experimental findings demonstrate that the functionalization of diamond nanoparticles is not trivial. Both the nature of the diamond surface and the structure of the applied azomethine ylides affect the behaviour of the immobilization. Nonetheless, the herein studied 1,3-dipolar cycloaddition of azomethine ylides is a useful method to functionalize nanodiamonds. It even allows for the simultaneous introduction of several different functional groups. Thus, this dipolar reaction is a valuable tool for the preparation of functionalized diamond nanomaterials, which could be employed for biomedical applications.

Page generated in 0.0518 seconds