• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

L'étude de l'influence du champ magnétique sur l'évolution stellaire / The study of the influence of the magnetic field on stellar evolution

Duthu, Alizee 11 October 2017 (has links)
L’influence du champ magnétique sur l’évolution stellaire reste à déterminer, notamment lors de la transition de la branche asymptotique des géantes (AGB) vers les Nébuleuses planétaires (PN) des étoiles de masse intermédiaire et solaire, et de la transition des supergéantes rouges (RSG) vers le stade des supernova (SN) ouWolf Rayet (WR) pour les étoiles massives. Le champ magnétique joue probablement un rôle important dans le processus de perte de masse et de leur changement de morphologie, passant d’un objet sphérique à un objet asymétrique avec émissions de jets de matière. Pendant ma thèse j’ai étudié l’enveloppe circumstellaire de Betelgeuse, une RSG. J’ai utilisé l’antenne radio IRAM-30m, pour réaliser le premier relevé spectral à 1,3 et 3 mm. Il en ressort que Betelgeuse est chimiquement jeune ; seulement 7 espèces ont été détectées. Cependant, pour la première fois lemaser SiO a été détecté pour cette étoile, ce qui pourrait permettre d’estimer le champ magnétique de l’enveloppe de cette étoile. La seconde partie de ma thèse a été d’estimer l’intensité du champ magnétique pour un échantillon d’AGBs et PNe grâce au radical CN sensible à l’effet Zeeman. L’intensité du champ magnétique selon l’axe de visé (Blos ) est estimée entre -7,5 et 14,2 mG. En comparant avec de précédentes études à toutes les longueurs d’onde, nous pouvons conclure que le champ magnétique décroit en 1/r où r est la distance à l’étoile. Pour l’étoile IRC+10216 le champ magnétique est estimé pour plusieurs positions de son enveloppe allant de -7,2 à 9,5 mG : Blos n’est pas homogène et aligné dans l’enveloppe. / The influence of themagnetic field on the stellar evolutions has still to be determined, particularly for the transition from the asymptotic giant branch (AGB) to planetary nebulae (PN) for intermediate and solar mass stars, and the transition from red supergiant (RSG) to supernova (SN) or Wolf Rayet (WR) for massive stars. The magnetic field plays likely an important role in the mass loss process, and the star morphology changes from a spherical to an asymmetric object with outflows. During my thesis, I studied the circumstellar envelope of Betelgeuse, an RSG. I used the radio telescope IRAM-30m, to make a spectral survey at 1,3 and 3 mm.We detect only 7 species hence revealing that Betelgeuse is chemically young. However we detect for the first time the SiO maser, which will make possible to estimate themagnetic field in the envelope of this star. The second part of my thesis was to estimate the intensity of the magnetic field for a sample of AGBs and PNe using the CN radical sensitive to the Zeeman effect. The intensity of the magnetic field along the line of sight (Blos) is estimated between -7.5 and 14.2 mG. Comparing with previous studies at all wavelengths, we can conclude that the magnetic field decreases in 1/r with r the distance to the star. For the star IRC+10216, Blos is estimated for several positions of the envelope between -7.2 and 9.5 mG : Blos is not homogeneous and aligned in the CSE.
2

Imagerie interférométrique infrarouge et perspectives pour l'observation interférométrique du Centre Galactique : le projet GRAVITY.

Haubois, Xavier 21 April 2009 (has links) (PDF)
Le centre de la Galaxie abrite un trou noir supermassif nommé Sgr A*. Grâce à l'instrument GRAVITY, les capacités de haute résolution angulaire du VLTI permettront pour la première fois l'observation directe de l'environnement immédiat d'un tel trou noir. Pour atteindre ce but astrophysique, il est nécessaire d'obtenir des observables interférométriques de grande précision et d'appliquer des techniques de reconstruction d'images. Dans ce contexte, j'ai pu dans une première partie de ma thèse, employer différentes méthodes d'imagerie interférométrique en infrarouge suite à l'observation de la supergéante rouge Alpha Orionis (Bételgeuse) avec l'interféromètre à trois télescopes IOTA. Ces travaux ont pu notamment conduire à la mise en évidence de structures asymétriques brillantes à la surface de l'étoile qui sont très probablement de nature convective.<br /><br />La précision des observables interférométriques conditionne la qualité de la reconstruction d'image. Dans une deuxième partie, j'ai pu pratiquer une étude des performances interférométriques simulées de GRAVITY afin d'estimer la précision sur les phases et visibilités qu'il délivrera. Afin d'optimiser les futures observations de GRAVITY, il est essentiel d'avoir une idée des caractéristiques spatiales et temporelles de son objectif scientifique majeur qu'est Sgr A*. Pour cela, j'ai pu finalement participer à une campagne d'observation multi-longueurs d'onde de l'environnement de ce trou noir. A cette occasion, j'ai utilisé le mode BURST du spectro-imageur VISIR pour obtenir une haute résolution angulaire et une grande sensibilité au rayonnement de Sgr A*. Ceci m'a conduit à obtenir une limite supérieure la plus basse jamais enregistrée à 8,6 microns. Autre fait marquant, ces observations ont révélé la présence d'un sursaut d'intensité lumineuse en proche infrarouge. Si le processus de rayonnement n'est pas encore parfaitement modélisé, ces observations tendent à confirmer que les sursauts tirent leur origine d'un mouvement orbital de matière à quelques rayons de Schwarzschild de Sgr A*.<br /><br />Grâce à sa précision astrométrique de 10 micro-secondes d'angle, correspondant à un rayon de Schwarzschild à la distance du Centre Galactique, GRAVITY sera en mesure de résoudre le mouvement orbital de ces spots de matière et de comprendre la nature d'un tel rayonnement. De plus, il permettra la mesure directe de la métrique d'espace-temps et l'étude de la relativité générale en champ fort.

Page generated in 0.0356 seconds