Spelling suggestions: "subject:"bêtalactamase -- inhibiteurs."" "subject:"bêtalactamase -- nhibiteurs.""
1 |
Synthèse et caractérisation de composés à potentiel antimicrobien à base de peptides et de sulfahydantoïnes inhibitrices de B-lactamases / Synthèse et caractérisation de composés à potentiel antimicrobien à base de peptides et de sulfahydantoïnes inhibitrices de bêta-lactamasesPaquet-Côté, Pierre-Alexandre 13 December 2023 (has links)
La résistance bactérienne aux antibiotiques est une menace en constante expansion. Les bactéries ne cessent de développer de nouvelles résistances à un rythme parfois plus rapide que notre capacité à développer de nouveaux médicaments pour les combattre. Il est donc important si l'on veut garder la cadence dans ce marathon contre les bactéries de continuer la recherche de nouvelles méthodes pour contrer la résistance aux antibiotiques. La présente étude se divise en deux projets portant chacun sur une approche distincte dans le but de développer de nouveaux antibiotiques. La première partie porte sur l'étude des peptides antimicrobiens comme nouvelle classe d'antibiotiques. Leur mode d'action distinct des antibiotiques sur le marché est prometteur pour un développement de résistance amoindrie. Par contre, leur complexité entraîne une conception de médicament plus ardue. Afin d'aider la compréhension des facteurs influençant l'interaction des peptides avec leur principale cible, les membranes cellulaires, un peptide modèle synthétique simple et neutre ainsi que des analogues chargés positivement furent développés dans notre groupe. Ces peptides, notamment surnommés 14-mère, R4R11 et R5R10, ont d'abord été étudiés par des multiples méthodes spectroscopiques, biophysiques et bio-informatique. Ces études démontrent qu'il est possible de moduler la structure secondaire des peptides par la position des acides aminés cationiques dans la séquence. De plus, la conformation des peptides influence leurs interactions avec les membranes modèles et les cellules où ceux en feuillets β sont plus sélectifs envers les modèles et cellules procaryotes alors que ceux sous forme d'hélice α interagissent indistinctement avec les deux types membranes modèles ou cellules. Il a aussi été observé une différence d'orientation entre les peptides hélicoïdaux neutres et cationiques en présence de différentes membranes lipidiques. Les peptides étudiés ont une plus grande affinité envers les bicouches plus minces et les peptides cationiques ont une plus grande interaction avec les membranes anioniques. Ensuite, le projet s'est poursuivi par l'étude de l'effet de l'ajout d'un groupement ayant une propension à se lier aux membranes procaryotes. Pour ce faire, un ligand bis-dipicolylamine (bis-DPA) a été ajouté à l'extrémité N-terminale des peptides 14-mère, R4R11 et R5R10 afin de former un complexe de Zn(II) in situ avec le ligand bis-DPA (Zn₂•bisDPA). En général, la présence du complexe augmente la sélectivité des peptides par l'entremise d'une interaction plus grande envers les cellules procaryotes et membranes modèles anioniques. La seconde partie vise plutôt la recherche de nouveaux inhibiteurs de β-lactamases visant sur une approche de combinaison de médicaments afin de diminuer la résistance aux antibiotiques β-lactames. Malgré leurs similitudes avec les composés β-lactames et leurs propriétés d'inhibiteurs de protéases, les molécules de la famille des sulfahydantoïnes n'ont pas été investiguées comme inhibiteurs de β-lactamases. Divers analogues ayant comme cœur l'hétérocycle sulfahydantoïne ont été synthétisés à partir d'acides aminés et ont été évalués pour leur pouvoir inhibiteur sur les β-lactamases courantes TEM-1 et TEM-15. De ces analogues, certain ont démontré une inhibition notable des deux β-lactamases avec des valeurs de IC₅₀ entre 130 et 510 μM et des valeurs inférées de Kᵢ entre 32 et 55 μM. Ces résultats indiquent que ce type de composés ont un potentiel intéressant comme futur inhibiteur de β-lactamases. / Antibiotic resistance is one of the top worldwide healthcare problems. Bacteria are continuously finding new ways to survive the treatment we develop. To stay ahead in this race, we must accelerate the development of new drugs that counteract bacterial resistance. The present study is divided in two projects each using a separate approach aiming to find new antimicrobial molecules. The first part of this thesis focusses on the study of antimicrobial peptides as a potential new class of antibiotics. Their mode of action is different than commercially available antibiotics and is less prone to induce resistance development. However, the design of new peptides for clinical uses is challenging because of the complexity of these compounds. To have a better understanding of the molecular determinants affecting their interaction with cellular membranes, we have developed a simple synthetic model peptide with a neutral global charge named 14-mer. Multiple analogs were synthesized bearing cationic amino acids at different positions in the sequence. Notably, analogs R4R11 and R5R10, bearing arginine residues at positions 4 and 11, and 5 and 10 respectively, were studied alongside the 14-mer model by various spectroscopic, biophysical and bioinformatics methods. These experiments show that the secondary structure and supramolecular self-assembly can be modulated by the position of the cationic residue in the peptide sequence. The peptide secondary structure affects their interactions with model membranes and living cells. The β-strand peptides tend to interact more selectively toward prokaryotic model membranes and cell whereas α-helical peptides interact indistinctly with both prokaryotic and eukaryotic model membranes and cells. In addition, a difference in peptide orientation has been observed between uncharged and cationic α-helical peptides when they interact with phospholipid membranes. These peptides have generally a higher affinity with thinner bilayers, and cationic peptides possess better interaction with cationic membranes. The investigation was continued by studying the effect of the incorporation of a molecular tag that is known to have a high affinity toward prokaryotic membranes. This was achieved by adding a bis-dipicolylamine (bis-DPA) ligand at the N-terminus of peptides 14-mer, R4R11 and R5R10 to form a Zn(II) complex in situ. The Zn(II) complex tends to increase the selectivity of the studied peptides toward prokaryotic model membranes and cells. The second part of this thesis instead focusses on finding new β-lactamase inhibitors in order to reduce the antibiotic resistance of one of the most versatile antibiotic families, the β-lactams. As potential candidates, the sulfahydantoin family has never been investigated for this application even if they possess similar structure to β-lactam antibiotics and has been shown to inhibit similar enzymes like proteases. To evaluate their potential, we synthesized multiple analogs containing the sulfahydantoin heterocycle starting from amino acids. These analogs were tested as inhibitors of two of the most prevalent β-lactamases, TEM-1 and TEM-15. Out of these compounds, two analogs have shown substantial inhibition with IC₅₀ values between 130 and 510 μM and inferred Kᵢ values between 32 and 55 μM. These results suggest that sulfahydantoin compounds have a good potential for the development of new and improved β-lactamase inhibitors.
|
Page generated in 0.068 seconds