• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • No language data
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

β-arrestin2/miR-155/GSK3β Regulates Transition of 5'-Azacytizine-Induced Sca-1-Positive Cells to Cardiomyocytes

Zhao, Jing, Feng, Yimin, Yan, Hui, Chen, Yangchao, Wang, Jinlan, Chua, Balvin, Stuart, Charles, Yin, Deling 01 January 2014 (has links)
Stem-cell antigen 1-positive (Sca-1+) cardiac stem cells (CSCs), a vital kind of CSCs in humans, promote cardiac repair in vivo and can differentiate to cardiomyocytes with 5'-azacytizine treatment in vitro. However, the underlying molecular mechanisms are unknown. b-arrestin2 is an important scaffold protein and highly expressed in the heart. To explore the function of b-arrestin2 in Sca-1+ CSC differentiation, we used b-arrestin2-knockout mice and overexpression strategies. Real-time PCR revealed that b-arrestin2 promoted 5'-azacytizine-induced Sca-1+ CSC differentiation in vitro. Because the microRNA 155 (miR-155) may regulate b-arrestin2 expression, we detected its role and relationship with b-arrestin2 and glycogen synthase kinase 3 (GSK3β), another probable target of miR-155. Real-time PCR revealed that miR-155, inhibited by b-arrestin2, impaired 5'-azacytizine-induced Sca-1+ CSC differentiation. On luciferase report assay, miR-155 could inhibit the activity of b-arrestin2 and GSK3β, which suggests a loop pathway between miR-155 and b-arrestin2. Furthermore, b-arrestin2-knockout inhibited the activity of GSK3β. Akt, the upstream inhibitor of GSK3β, was inhibited in b-arrestin2-Knockout mice, so the activity of GSK3β was regulated by b-arrestin2 not Akt. We transplanted Sca-1+ CSCs from b-arrestin2-knockout mice to mice with myocardial infarction and found similar protective functions as in wild-type mice but impaired arterial elastance. Furthermore, low level of b-arrestin2 agreed with decreased phosphorylation of AKT and increased phophorylation of GSK3β, similar to in vitro findings. The β-arrestin2/miR-155/GSK3β pathway may be a new mechanism with implications for treatment of heart disease.

Page generated in 0.0739 seconds