• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Design of Automotive Joints Using Response Surface Polynomials and Neural Networks

Ling, Qi 19 November 1998 (has links)
In the early design stages of a car body, a simplified model, which represents the constituent components of the car body by their performance characteristics, is used to optimize the overall car. The determined optimum performance characteristics of the components are used as performance targets to design these components. Since designers do not know the relation between the performance characteristics of the components and their dimensions and mass, this may lead to unreasonable performance targets for the components. Moreover, this process is inefficient because design engineers use empirical procedures to design the components that should meet these targets. To design the component more efficiently, design tools are needed to link the performance targets with the physical design variables of the components. General methodologies for developing two design tools for the design of car joints are presented. These tools can be viewed as translators since they translate the performance characteristics of the joint into its dimensions and vice-versa. The first tool, called translator A, quickly predicts the stiffness and the mass of a given joint. The second tool, called translator B, finds the dimensions and mass of the most efficient joint design that meets given stiffness requirements, packaging, manufacturing and styling constraints. Putting bulkheads in the joint structure is an efficient way to increase stiffness. This thesis investigates the effect of transverse bulkheads on the stiffness of an actual B-pillar to rocker joint. It also develops a translator A for the B-pillar to rocker joint with transverse bulkheads. The developed translator A can quickly predict the stiffness of the reinforced joint. Translator B uses optimization to find the most efficient, feasible joint design that meets given targets. Sequential Linear Programming (SLP) and the Modified Feasible Direction (MFD) method are used for optimization. Both Response Surface Polynomial (RSP) translator B and Neural Network (NN) translator B are developed and validated. Translator A is implemented in an MS-Excel program. Translator B is implemented in a MATHEMATICA program. The methodology for developing translator B is demonstrated on the B-pillar to rocker joint of an actual car. The convergence of the optimizer is checked by solving the optimization problem many times starting from different initial designs. The results from translator B are also checked against FEA results to ensure the feasibility of the optimum designs. By observing the optimum designs and by performing parametric studies for the effect of some important design variables on the joint mass we can establish guidelines for design of joints. / Master of Science
2

Development of Dynamic Test Method and Optimisation of Hybrid Carbon Fibre B-pillar

Johansson, Emil, Lindmark, Markus January 2017 (has links)
The strive for lower fuel consumption and downsizing in the automotive industry has led to the use of alternative high performance materials, such as fibre composites. Designing chassis components with composite materials require accurate simulation models in order to capture the behaviour in car crashes. By simplifying the development process of a B-pillar with a new dynamic test method, composite material products could reach the market faster. The setup has to predict a cars side impact crash performance by only testing the B-pillar in a component based environment. The new dynamic test method with more realistic behaviour gives a better estimation of how the B-pillar, and therefore the car, will perform in a full-scale car side impact test. With the new improved tool for the development process, the search for a lighter product with better crash worthiness is done by optimising a steel carbon fibre hybrid structure in the B-pillar. The optimisation includes different carbon fibre materials, composite laminate lay-up and stiffness analysis. By upgrading simulation models with new material and adhesive representation physical prototypes could be built to verify the results. Finally the manufactured steel carbon fibre hybrid B-pillar prototypes were tested in the developed dynamic test method for a comparison to the steel B-pillar. The hybrid B-pillars perform better than the reference steel B-pillar in the dynamic tests also being considerably lighter. As a final result a hybrid B-pillar is developed that will decrease fuel consumption and meet the requirements of any standardized side impact crash test. / Strävan efter lägre bränsleförbrukning och minimalistiskt tänkande inom bilindustrin har lett till användning av alternativa högpresterande material, såsom fiberkompositer. Vid design av chassi-komponenter utav kompositer krävs noggranna simuleringsmodeller för att fånga upp bilens beteende vid en krock. Genom att förenkla utvecklingsprocessen för en B-stolpe med en ny dynamisk testmetod kan produkter bestående av fiberkompositer nå marknaden snabbare. Provuppställningen skall förutse bilens prestanda vid ett sidokrocktest genom att endast testa B-stolpen i en komponentbaserad miljö. Den nya dynamiska testmetoden med ett mer realistiskt beteende skall ge en bättre uppskattning om hur B-stolpen, och därmed bilen, kommer att prestera i ett fullskaligt sidokrocktest. Med utvecklingsprocessens nya förbättrade verktyg kan strävan mot lättare produkter med bättre krocksäkerhet utvecklas genom optimering av en hybrid B-stolpe i stål och kolfiber. Optimeringen innefattar olika kolfibermaterial, laminatvarianter och styvhetsanalyser. Genom att uppgradera simuleringsmodeller med nya material och adhesiva metoder kunde fysiska prototyper tillverkas för att verifiera resultaten. Slutligen testades de tillverkade prototyperna utav stål och kolfiber i den nyutvecklade dynamiska testmetoden för jämförelse mot den ursprungliga stål B-stolpen. Hybrid B-stolparna presterade bättre än referensstolpen utav stål i de dynamiska provningarna och är samtidigt betydligt lättare. Det slutgiltigt resultatet är en utvecklad hybrid B-stolpe som både ger minskad bränsleförbrukningen och uppfyller kraven för ett standardiserat sidokrocktest.

Page generated in 0.0299 seconds