• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • 1
  • Tagged with
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Exploring Baxter Robot and Development of Python algorithms to Execute Holding, Lifting and Positioning Tasks

Andersson, Rabé January 2019 (has links)
The greatest feature of using a Baxter robot among other industrial robots is the ability to train this robot conveniently. The training of the robot could be done within a few minutes and it does not need so much knowledge of programming. However, this type of training feature is limited in functionality and needs frequent updating of the software and the license from the manufactural company. As the manufacturer of Baxter Robot no longer exists due to a merger, the thesis has twofold aims, (1) Exploring different functional, installation, calibration, troubleshooting and hardware features of the Baxter robot and (2) demonstrate the functionality of Baxter to perform general tasks of holding, lifting and moving of test objects from one desired position to another position using custom-made programs in Python. Owing to this, details about different software and hardware aspects of Baxter robot is presented in this thesis. Additionally, systematic laboratory tutorials are also presented in appendices for students who want to learn and operate the robot from simple to complicated tasks. In order to keep the Baxter operational for students and researchers in future, when there is no more help available from its manufacturer, this thesis endeavour to cover all these aspects. Thus, the thesis presents a brief understanding of how to use the Baxter Robot in a simple and efficient way to perform a basic industrial task. The kinematics part will show the concepts of forward and inverse kinematics and the DH (the Denavit–Hartenberg) parameters that are important to understand the end-effector position according to the world frame that will give the knowledge of those who are interested in the kinematics part of Baxter robot. The work of the thesis will make it easier to understand how to program a Baxter robot by using Python language and using the simplest way to move the arm to certain positions. The ROS principles, kinematics and Python language programs will provide a good platform to understand the usability of Baxter robot. Furthermore, easy to use laboratory tutorials are devised and are presented in the appendices. These laboratory tutorials will improve the understanding of the readers and provide a step-by-step guide of operating Baxter robot according to the principles of Robotics. In addition to all these points above, the thesis shows useful functions that are built in ROS (Robot Operating System) that make it easier to program the robot in an untraditional way which is one of a contribution of this thesis itself. The usual way to program the robots, in general, is to study the robot kinematics and calculate the position of the end-effector or the tool according to some frame or the world coordinate frame. This calculation can be done by the forward kinematics or the inverse kinematics. The set of programming Baxter robot in this thesis is not the complex calculation of the forward or the inverse kinematics. The tf (transform)tool in ROS has made it easier to reach the joint angles and program Baxter robot using Python.
2

Controle de posição com múltiplos sensores em um robô colaborativo utilizando liquid state machines

Sala, Davi Alberto January 2017 (has links)
A ideia de usar redes neurais biologicamente inspiradas na computação tem sido amplamente utilizada nas últimas décadas. O fato essencial neste paradigma é que um neurônio pode integrar e processar informações, e esta informação pode ser revelada por sua atividade de pulsos. Ao descrever a dinâmica de um único neurônio usando um modelo matemático, uma rede pode ser implementada utilizando um conjunto desses neurônios, onde a atividade pulsante de cada neurônio irá conter contribuições, ou informações, da atividade pulsante da rede em que está inserido. Neste trabalho é apresentado um controlador de posição no eixo Z utilizando fusão de sensores baseado no paradigma de Redes Neurais Recorrentes. O sistema proposto utiliza uma Máquina de Estado Líquido (LSM) para controlar o robô colaborativo BAXTER. O framework foi projetado para trabalhar em paralelo com as LSMs que executam trajetórias em formas fechadas de duas dimensões, com o objetivo de manter uma caneta de feltro em contato com a superfície de desenho, dados de sensores de força e distância são alimentados ao controlador. O sistema foi treinado utilizando dados de um controlador Proporcional Integral Derivativo (PID), fundindo dados de ambos sensores. Resultados mostram que a LSM foi capaz de aprender o comportamento do controlador PID em diferentes situações. / The idea of employing biologically inspired neural networks to perform computation has been widely used over the last decades. The essential fact in this paradigm is that a neuron can integrate and process information, and this information can be revealed by its spiking activity. By describing the dynamics of a single neuron using a mathematical model, a network in which the spiking activity of every single neuron will get contributions, or information, from the spiking activity of the embedded network. A positioning controller based on Spiking Neural Networks for sensor fusion suitable to run on a neuromorphic computer is presented in this work. The proposed framework uses the paradigm of reservoir computing to control the collaborative robot BAXTER. The system was designed to work in parallel with Liquid State Machines that performs trajectories in 2D closed shapes. In order to keep a felt pen touching a drawing surface, data from sensors of force and distance are fed to the controller. The system was trained using data from a Proportional Integral Derivative controller, merging the data from both sensors. The results show that the LSM can learn the behavior of a PID controller on di erent situations.
3

Controle de posição com múltiplos sensores em um robô colaborativo utilizando liquid state machines

Sala, Davi Alberto January 2017 (has links)
A ideia de usar redes neurais biologicamente inspiradas na computação tem sido amplamente utilizada nas últimas décadas. O fato essencial neste paradigma é que um neurônio pode integrar e processar informações, e esta informação pode ser revelada por sua atividade de pulsos. Ao descrever a dinâmica de um único neurônio usando um modelo matemático, uma rede pode ser implementada utilizando um conjunto desses neurônios, onde a atividade pulsante de cada neurônio irá conter contribuições, ou informações, da atividade pulsante da rede em que está inserido. Neste trabalho é apresentado um controlador de posição no eixo Z utilizando fusão de sensores baseado no paradigma de Redes Neurais Recorrentes. O sistema proposto utiliza uma Máquina de Estado Líquido (LSM) para controlar o robô colaborativo BAXTER. O framework foi projetado para trabalhar em paralelo com as LSMs que executam trajetórias em formas fechadas de duas dimensões, com o objetivo de manter uma caneta de feltro em contato com a superfície de desenho, dados de sensores de força e distância são alimentados ao controlador. O sistema foi treinado utilizando dados de um controlador Proporcional Integral Derivativo (PID), fundindo dados de ambos sensores. Resultados mostram que a LSM foi capaz de aprender o comportamento do controlador PID em diferentes situações. / The idea of employing biologically inspired neural networks to perform computation has been widely used over the last decades. The essential fact in this paradigm is that a neuron can integrate and process information, and this information can be revealed by its spiking activity. By describing the dynamics of a single neuron using a mathematical model, a network in which the spiking activity of every single neuron will get contributions, or information, from the spiking activity of the embedded network. A positioning controller based on Spiking Neural Networks for sensor fusion suitable to run on a neuromorphic computer is presented in this work. The proposed framework uses the paradigm of reservoir computing to control the collaborative robot BAXTER. The system was designed to work in parallel with Liquid State Machines that performs trajectories in 2D closed shapes. In order to keep a felt pen touching a drawing surface, data from sensors of force and distance are fed to the controller. The system was trained using data from a Proportional Integral Derivative controller, merging the data from both sensors. The results show that the LSM can learn the behavior of a PID controller on di erent situations.
4

Controle de posição com múltiplos sensores em um robô colaborativo utilizando liquid state machines

Sala, Davi Alberto January 2017 (has links)
A ideia de usar redes neurais biologicamente inspiradas na computação tem sido amplamente utilizada nas últimas décadas. O fato essencial neste paradigma é que um neurônio pode integrar e processar informações, e esta informação pode ser revelada por sua atividade de pulsos. Ao descrever a dinâmica de um único neurônio usando um modelo matemático, uma rede pode ser implementada utilizando um conjunto desses neurônios, onde a atividade pulsante de cada neurônio irá conter contribuições, ou informações, da atividade pulsante da rede em que está inserido. Neste trabalho é apresentado um controlador de posição no eixo Z utilizando fusão de sensores baseado no paradigma de Redes Neurais Recorrentes. O sistema proposto utiliza uma Máquina de Estado Líquido (LSM) para controlar o robô colaborativo BAXTER. O framework foi projetado para trabalhar em paralelo com as LSMs que executam trajetórias em formas fechadas de duas dimensões, com o objetivo de manter uma caneta de feltro em contato com a superfície de desenho, dados de sensores de força e distância são alimentados ao controlador. O sistema foi treinado utilizando dados de um controlador Proporcional Integral Derivativo (PID), fundindo dados de ambos sensores. Resultados mostram que a LSM foi capaz de aprender o comportamento do controlador PID em diferentes situações. / The idea of employing biologically inspired neural networks to perform computation has been widely used over the last decades. The essential fact in this paradigm is that a neuron can integrate and process information, and this information can be revealed by its spiking activity. By describing the dynamics of a single neuron using a mathematical model, a network in which the spiking activity of every single neuron will get contributions, or information, from the spiking activity of the embedded network. A positioning controller based on Spiking Neural Networks for sensor fusion suitable to run on a neuromorphic computer is presented in this work. The proposed framework uses the paradigm of reservoir computing to control the collaborative robot BAXTER. The system was designed to work in parallel with Liquid State Machines that performs trajectories in 2D closed shapes. In order to keep a felt pen touching a drawing surface, data from sensors of force and distance are fed to the controller. The system was trained using data from a Proportional Integral Derivative controller, merging the data from both sensors. The results show that the LSM can learn the behavior of a PID controller on di erent situations.

Page generated in 0.0285 seconds