1 |
DLBCL, primary and secondary central nervous system involvement, treatment and prophylaxisKuitunen, H. (Hanne) 14 November 2017 (has links)
Abstract
Diffuse large B-cell lymphoma (DLBCL) is the most common type of Non-Hodgkin´s Lymphoma (NHL). The standard treatment for DLBCL is R-CHOP chemoimmunotherapy (rituximab, cyclophosphamide, vincristine, doxorubicin and prednisone). About one -third of patients have refractory disease or the lymphoma relapses. Prognosis after relapse of refractory disease is poor. Fitter and younger patients are recommended new intensive salvage chemotherapy followed by autologous stem cell transplantation. Central nervous system (CNS) relapse is the most feared complication with dismal prognosis in DLBCL. High dose methotrexate intravenously administered concurrently with R-CHOP treatment has shown to be most promising to prevent CNS relapses.
Primary CNS lymphoma (PCNSL) is a rare aggressive lymphoma limited to the CNS and eyes. PCNSL is a chemo-and radiosensitive disease, but long-term response is rare since the blood brain barrier (BBB) limits access of many drugs to the CNS. BBB disruption (BBBD) is a treatment modality where the BBB is opened by hypertonic mannitol infusion. Administration of chemotherapeutics will achieve over ten-fold concentrations in the CNS and eradicate microscopic disease involvement.
This study retrospectively analyses patients who treated as first line with Bonn/Bonn-like treatment (study I), with BBBD treatment followed by high-dose treatment/autologous stem cell transplantation (HDT/ASCT) in first- or second-line (study II) or those treated with primary R-CHOP or its derivatives with or without concurrent CNS-targeted treatment (study III).
HD-MTX-based multichemotherapy is an effective induction treatment in CNS lymphoma, but long-lasting responses are rare. BBBD-treatment is well-tolerated and a promising method to attain high drug concentrations in the CNS to eradicate microscopic disease involvement in first- and second-line. CNS-prophylaxis with HD-MTX prevents CNS events in high risk DLBCL. PCNSL is agressive disease despite excellent primary response with HD-MTX based multichemotherapy. BBBD-treatment is a promising method to eradicate microscopic disease in the CNS and achieve a long-term response and cure rate. Fatal CNS relapses can be avoided using CNS-targeted treatment. / Tiivistelmä
Diffuusi suurisoluinen B-solulymfooma (DLBCL) on yleisin non-Hodgkin lymfooma (NHL), jonka standardihoitona toimii R-CHOP (rituksimabi, syklofosfamidi, vinkristiini, doksorubisiini, prednisoloni). Noin kolmasosalla potilaista tautii etenee hoidosta huolimatta tai uusii hoidon päätyttyä. Relapoituneen tai refraktaarin taudin ennuste on huono. Hyväkuntoisilla ja nuoremmilla potilailla pyritään etenemään uuteen induktiohoitoon ja korkea-annoshoitoon autologisen kantasolusiirteen turvin. Keskushermostouusiutuma on huonoennusteisin DLBCL:n komplikaatio. Suuriannosmetotreksaattihoito liitettynä R-CHOP-hoitoon estää keskushermostouusiutumia.
Primaari aivolymfooma (PCNSL) on harvinainen keskushermoston ja silmien alueelle rajautuva lymfooma. PCNSL on herkkä sytostaatti-ja sädehoidolle, mutta pitkäkestoisia vasteita nähdään harvoin. Veriaivoeste estää useimpien tehokkaiden sytostaattien pääsyn keskushermostoon. Veriaivoesteen aukaisuhoidossa veriaivoeste avataan hypertonisella mannitoli-infuusiolla. Toimenpiteen jälkeisellä sytostaatti-infuusiolla saavutetaan kymmenkertaiset lääkeainepitoisuudet keskushermostossa ja voidaan hoitaa mikroskooppista veriaivoesteen takana sijaitsevaa tautia.
Väitöskirjatyön tutkimukset ovat retrospektiivisiä. Ensimmäisessä osatyössä analysoitiin PCNSL potilaat, jotka saivat ensilinjassa Bonnin tai Bonnin kaltaista hoitoa. Toisessa osatyössä potilaat hoidettiin joko ensi- tai toisessa linjassa BBBD-hoidolla, päättyen konsolidaatiohoitona annettavaan korkea-annoshoitoon autologisen kantasolusiirteen turvin. Kolmannessa osatyössä analysoitiin suuren aivouusiutumariskin potilaita, joko yhdessä tai ilman keskushermostoon suunnattua hoitoa samanaikaisesti R-CHOP-hoidon kanssa.
Suuriannosmetotreksaatti-pohjainen yhdistelmäsolunsalpaajahoito on tehokas induktiohoito aivolymfoomassa pitkäkestoisten vasteiden ollessa harvinaisia. BBBD-hoito on hyvin siedetty ja lupaava hoitomuoto, jolla keskushermostossa voidaan saavuttaa suuret lääkeainepitoisuudet, jotka riittävät hoitamaan mikroskooppisen taudin sekä ensi että toisessa linjassa. Keskushermostoprofylaksia suuriannosmetotreksaatilla estää keskushermosto-uusiutumia suuren riskin DLBCL-potilailla.
PCNSL on agressiivinen tauti huolimatta erinomaisista metotreksaattipohjaisilla hoidoilla saavutetuista ensilinjan vasteista. BBBD-hoito on lupaava keino eradikoida mikroskooppinen tauti keskushermostosta ja saavuttaa pitkäaikaisia hoitovasteita, sekä pysyvä paraneminen aivolymfoomassa. Suuriannosmetotreksaattia sisältävällä sytostaattihoidolla voidaan estää fataaleja aivorelapseja DLBCL:ssä.
|
2 |
Integrating near-infrared spectroscopy to synchronous multimodal neuroimaging:applications and novel findingsKorhonen, V. (Vesa) 22 November 2016 (has links)
Abstract
Brain disorders such as epilepsy, dementia and other mental illnesses induce increasing costs on health care systems with aging populations. The most effective treatment of these disorders would be either prevention or intervention of the disorder before irreversible damage develops. However, despite the increased interest in different brain diseases, many of them are still detected too late. One reason for this is the lack of appropriate functional imaging modality that can critically sample the targeted physiological phenomenon. Furthermore, it has been shown that one imaging modality is not enough to cover brain functionality properly; a multimodal approach is required.
The main goal of this thesis was to validate near-infrared spectroscopy (NIRS) for brain measurement and to integrate it into a multimodal neuroimaging setup that can critically sample basic human physiological phenomena. A novel key element was the combined use of NIRS with ultra-fast magnetic resonance encephalography (MREG), electroencephalography (EEG), continuous non-invasive blood pressure and anesthesia monitoring as a synchronous system. This unique multimodal neuroimaging set-up with a new functional magnetic resonance imaging sequence, MREG, can sample human brain physiology at 10 Hz sampling rate without cardiorespiratory aliasing.
The implemented setup was successfully used in scanning multiple patient and control populations. With the help of critical sampling rate, non-stationarity between the measured signals reflecting brain pulsations could be detected. Combined NIRS and EEG showed the capability to monitor therapeutic opening of the blood-brain barrier during treatment of central nervous system lymphoma for the first time in humans. Furthermore, our multimodal neuroimaging setup enabled the mapping of the recently described brain avalanches and glymphatic pulsation mechanisms of the brain.
In conclusion, the ultra-fast multimodal laboratory with integrated NIRS offers novel and more comprehensive views on basic brain physiology. The measures from this thesis also have the potential to offer new, quantitative biomarkers for the detection of different brain disorders prior to irreversible damage. / Tiivistelmä
Aivosairaudet kuten epilepsia, dementia ja muut mielenterveyden häiriöt aiheuttavat kasvavissa määrin kuluja ikääntyvien ihmisten terveydenhuollossa. Näiden tautien tehokkain hoitokeino olisi joko ennaltaehkäisy tai varhainen havaitseminen ennen peruuttamattomien kudosvaurioiden kehittymistä. Lisääntyneestä kiinnostuksesta huolimatta monet aivosairaudet havaitaan edelleen liian myöhään. Osasyy tähän on sopivan toiminnallisen kuvausmenetelmän puuttuminen, jolla voitaisiin kuvata haluttu fysiologinen ilmiö riittävän nopeasti. Onkin osoitettu, ettei yksittäinen kuvausmenetelmä riitä aivojen toiminnan riittävän tarkkaan ymmärtämiseen, vaan siihen tarvitaan eri menetelmien yhdistämistä.
Tämän väitöskirjatutkimuksen päätarkoituksena oli arvioida lähi-infrapunaspektroskopian (NIRS) soveltuvuutta aivojen toiminnan mittaamisessa sekä integroida se osaksi multimodaalista neurokuvantamisjärjestelmää. Uutena elementtinä NIRS:iä käytettiin yhdessä ultranopean magneettiresonanssienkefalogrammin (MREG), aivosähkökäyrän (EEG), jatkuva-aikaisen kajoamattoman verenpaineen mittauksen ja anestesiamonitoroinnin kanssa samanaikaisesti, ajallisesti synkronoituna. Yhdessä uuden toiminnallisen magneettikuvaussekvenssin, MREG:n, kanssa tällä ainutlaatuisella multimodaalisella neurokuvantamisjärjestelmällä voidaan kuvata ihmisen aivojen perusfysiologiaa 10 Hz näytteistysnopeudella ilman sydämen sykkeen ja hengityksen laskostumista.
Toteutetulla multimodaalisella mittausjärjestelmällä tehtiin useita onnistuneita kuvauksia eri potilasryhmillä ja terveillä koehenkilöillä. Kriittisen näytteistämisen ansiosta voitiin havaita epästationaarisuutta aivojen pulsaatioita heijastelevien signaalien välillä. NIRS:n ja EEG:n samanaikainen mittaaminen mahdollisti ensimmäistä kertaa ihmisen veriaivoesteen aukeamisen monitoroinnin keskushermostolymfoomapotilaiden hoidossa. Lisäksi multimodaalinen neurokuvantamisjärjestelmä mahdollisti hiljattain havaittujen aivojen vyöryjen (engl. avalanches) ja glymfaattisten pulsaatioiden kartoittamisen.
Yhteenvetona voidaan todeta, että väitöskirjatyön aikana toteutettu multimodaalinen laboratorio yhdessä NIRS:n kanssa mahdollistaa aivojen perusfysiologian edistyksellisen ja tarkan tutkimisen. Nyt kehitetyt mittarit saattavat myös tarjota uusia, kvantitatiivisia biomarkkereita eri aivosairauksiin ennen vakavien vaurioiden syntymistä.
|
3 |
Overcoming therapeutic resistance in glioblastoma using novel electroporation-based therapiesPartridge, Brittanie R. 25 October 2022 (has links)
Glioblastoma (GBM) is the most common and deadliest of the malignant primary brain tumors in humans, with a reported 5-year survival rate of only 6.8% despite years of extensive research. Failure to improve local tumor control rates and overall patient outcome is attributed to GBM's inherent therapeutic resistance. Marked heterogeneity, extensive local invasion within the brain parenchyma, and profound immunosuppression within the tumor microenvironment (TME) are some of the unique features that drive GBM therapeutic resistance. Furthermore, tumor cells are sequestered behind the blood-brain barrier (BBB), limiting delivery of effective therapeutics and immune cell infiltration into the local tumor. Electroporation-based therapies, such as irreversible electroporation (IRE) and second generation, high-frequency IRE (H-FIRE) represent attractive alternative approaches to standard GBM therapy given their ability to induce transient BBB disruption (BBBD), achieve non-thermal tumor cell ablation and stimulate local and systemic anti-tumor immune responses without significant morbidity.
The following work explores the use of H-FIRE to overcome GBM-induced therapeutic resistance and improve treatment success. Chapter 1 opens with an overview of GBM and known barriers to treatment success. Here, we emphasize the utility of spontaneous canine gliomas as an ideal translational model for investigations into novel treatment approaches. Chapter 2 introduces novel ablation methods (i.e. IRE/H-FIRE) capable of targeting treatment-resistant cancer stem cells. The focus of Chapter 3 is to highlight IRE applications in a variety of spontaneous tumor types. In Chapter 4, we investigate the feasibility and local immunologic response of percutaneous H-FIRE for treatment of primary liver tumors using a spontaneous canine hepatocellular carcinoma (HCC) model. In chapter 5, we characterize the mechanisms of H-FIRE-mediated BBBD in an in vivo healthy rodent model. In Chapter 6, we characterize the local and systemic immune responses to intracranial H-FIRE in rodent and canine glioma models to enhance the translational value of our work. Collectively, our work demonstrates the potential for H-FIRE to overcome therapeutic resistance in GBM, thereby supporting its use as a novel, alternative treatment approach to standard therapy. / Doctor of Philosophy / Glioblastoma (GBM) is the most common and deadliest form of primary brain cancer in humans, with only 6.8% of people surviving 5-years after their diagnosis. GBM is characterized by a number of unique features that make it resistant to standard treatments, such as surgery, radiation and chemotherapy. Examples include: (1) extensive invasion of tumor cells into the brain, making complete removal via surgery very difficult; (2) tumor cells are protected by a structure called the blood-brain barrier (BBB), which restricts the entry of most drugs (i.e. chemotherapy) and many immune cells, into the brain, thereby preventing them from reaching tumor cells; (3) tumor cells produce substances that block the immune system from being able to detect the tumor itself, which allows it to continue to grow undetected.
High-frequency irreversible electroporation (H-FIRE) represents a new approach for the treatment of GBM. H-FIRE uses electric pulses to temporarily or permanently injure cell membranes without the use of heat, which allows for very precise treatment. The following work explores the ways in which H-FIRE can interfere with specific GBM features that drive its resistance to treatment. Here, we demonstrate that H-FIRE is capable of temporarily disrupting the BBB and characterize the mechanisms by which this occurs. This allows for drugs and immune cells within the blood to enter the brain and access the tumor cells, particularly those extending beyond the visible tumor mass and invading the brain. We also illustrate the potential for H-FIRE treatment within the brain to stimulate local and systemic immune responses by causing the release of proteins from injured cells. Similar to a vaccine, these proteins are recognized by the immune system, which becomes primed to help fight off cancer cells within the body. The end result is an anti-tumor immune response. Collectively, this work supports the use of H-FIRE as an alternative treatment approach to standard therapy for GBM given its potential to overcome certain causes of treatment resistance.
|
Page generated in 0.0214 seconds