• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Evaluating energy-efficient cloud radio access networks for 5G

Sigwele, Tshiamo, Alam, Atm S., Pillai, Prashant, Hu, Yim Fun 04 February 2016 (has links)
Yes / Next-generation cellular networks such as fifth-generation (5G) will experience tremendous growth in traffic. To accommodate such traffic demand, there is a necessity to increase the network capacity that eventually requires the deployment of more base stations (BSs). Nevertheless, BSs are very expensive and consume a significant amount of energy. Meanwhile, cloud radio access networks (C-RAN) has been proposed as an energy-efficient architecture that leverages cloud computing technology where baseband processing is performed in the cloud, i.e., the computing servers or baseband processing units (BBUs) are located in the cloud. With such an arrangement, more energy saving gains can be achieved by reducing the number of BBUs used. This paper proposes a bin packing scheme with three variants such as First-fit (FT), First-fit decreasing (FFD) and Next-fit (NF) for minimizing energy consumption in 5G C-RAN. The number of BBUs are reduced by matching the right amount of baseband computing load with traffic load. In the proposed scheme, BS traffic items that are mapped into processing requirements, are to be packed into computing servers, called bins, such that the number of bins used are minimized and idle servers can then be switched off to save energy. Simulation results demonstrate that the proposed bin packing scheme achieves an enhanced energy performance compared to the existing distributed BS architecture.
2

iTREE: Intelligent Traffic and Resource Elastic Energy scheme for Cloud-RAN

Sigwele, Tshiamo, Pillai, Prashant, Hu, Yim Fun 26 October 2015 (has links)
Yes / By 2020, next generation (5G) cellular networks are expected to support a 1000 fold traffic increase. To meet such traffic demands, Base Station (BS) densification through small cells are deployed. However, BSs are costly and consume over half of the cellular network energy. Meanwhile, Cloud Radio Access Networks (C-RAN) has been proposed as an energy efficient architecture that leverage cloud computing technology where baseband processing is performed in the cloud. With such an arrangement, more energy gains can be acquired through statistical multiplexing by reducing the number of BBUs used. This paper proposes a green Intelligent Traffic and Resource Elastic Energy (iTREE) scheme for C-RAN. In iTREE, BBUs are reduced by matching the right amount of baseband processing with traffic load. This is a bin packing problem where items (BS aggregate traffic) are to be packed into bins (BBUs) such that the number of bins used are minimized. Idle BBUs can then be switched off to save energy. Simulation results show that iTREE can reduce BBUs by up to 97% during off peak and 66% at peak times with RAN power reductions of up to 27% and 18% respectively compared with conventional deployments.

Page generated in 0.0663 seconds