1 |
The Cytotoxic Effect of the BCL-2 Family of Proteins in Breast Cancer CellsChin, Yamileth 01 January 2014 (has links)
Breast cancer is the second leading cause of death amongst women ages 20 to 59. Despite advancements in cancer therapies, more research is necessary to improve the diagnoses and treatment of several types of breast cancer. Paclitaxel (Taxol) is a commonly utilized anti-cancer drug for various types of solid tumors. However, the molecular mechanism utilized by paclitaxel to induce cell death is still elusive. Previous studies in our laboratory have shown that the pro-apoptotic BCL-2 family protein, BAK (BCL-2 homologous antagonist/killer) plays an important role in paclitaxel-induced cell death. In untreated breast cancer cells, BAK is associated with the anti-apoptotic BCL-2 family protein MCL-1 (myeloid leukemia cell differentiation protein). BAK is activated with paclitaxel treatment in concert with loss of MCL-1 expression. In addition, it has been shown that the pro-apoptotic BH3-only BCL-2 family protein Noxa, specifically interacts with MCL-1 to inactivate MCL-1 function. Based on these observations, we hypothesized that modulation of Noxa/MCL-1 axis could mimic paclitaxel-induced cell death. Here, we found that down-regulation of MCL-1 induced cell death in all breast cancer cell lines that we tested, but not in a non-transformed breast epithelial cell line. In contrast, Noxa overexpression induced MCL-1 degradation and cell death in some cell lines (Noxa-sensitive), while in others Noxa overexpression neither changed MCL-1 levels nor induced cell death (Noxa-resistant). Noxa strongly interacted with MCL-1 in the Noxa-sensitive cell line, but not in the Noxa-resistant cell line. Based on these findings, the overexpression of Noxa might have two different mechanistic effects on MCL-1 levels in the breast cancer cell lines (induction of MCL-1 degradation or no effect on MCL-1). In Noxa-sensitive cells, the finding could be used as a potential therapeutic strategy for the treatment of breast cancer.
|
2 |
Examining Glucose Metabolism in Survival and Proliferation of B Cell Derived LeukemiaLiu, Tingyu January 2014 (has links)
<p>It has been long known that many types of cancers have high metabolic requirements and use reprogrammed metabolism to support cellular activities. The first identified metabolic alteration in cancer cells was elevated glucose uptake, glycolysis activity and lactate production even in the presence of oxygen. This metabolic program, termed aerobic glycolysis or the Warburg effect, provides cells with energy as well as biosynthetic substrates to sustain cell survival and rapid cell proliferation. Cancer metabolism is closely linked to genetic mutations and oncogenic signaling pathways, such as PI3K/Akt, cMyc and HIF pathways. These oncogenic signals can direct metabolic reprogramming while changes in metabolic status can regulate activities of these signaling pathways in turn. In addition to glucose, later studies also found utilization of alternate nutrients in cancer cells, including glutamine and lipids. Glutamine is the second major metabolic fuel and can be converted to various substrates to support cell bioenergetics needs and biosynthetic reactions. Usage of metabolic fuels in cancer cells, however, is variable. While certain cancers display addiction to one type of nutrient, others are capable of using multiple nutrients. </p><p>The unique metabolic features of cancer cells raise the possibility of targeting metabolism as a novel therapeutic approach for cancer treatment. Using pharmacological inhibitors, previous research has provided corroborating evidence that metabolic stress can impact survival and growth of proliferative cancer cells by regulating cell apoptotic machinery and cell cycle checkpoints. Due to lack of genetic tools and side effects from these inhibitors, however, mechanistic understanding of cell response to metabolic inhibition was limited in these studies. More importantly, how metabolic stress affects cancer progression in a physiological condition has not yet been well investigated. Lastly, current research has not examined metabolic program in indolent cancers and the metabolic requirements and activities in less proliferative cells also remain to be understood.</p><p>This work examines nutrients utilization in B cell derived acute and chronic leukemia (B-ALL and B-CLL). B-ALL is an aggressive form of leukemia. Using cell lines and primary patient samples, we found B-ALL cells primarily used glucose through aerobic glycolysis, similar to other proliferative cancer cells. B-ALL cells were also more sensitive to inhibition of glycolysis than normal B cells. Employing an untargeted metabolomics profiling in combination with isotope labeled glucose tracing approach, we show in a B-ALL model that genetic ablation of glucose transporter Glut1 partially reduced glucose uptake, sufficiently hindered anabolic pathways and promoted catabolic metabolism. This metabolic shift led to sharply curtailed B-ALL proliferation in vitro and reduced leukemic burden in vivo. Furthermore, this partial inhibition of glucose metabolism sensitized B-ALL cells to apoptotic stimuli and non-cytotoxic metabolic inhibition significantly enhanced efficacy of a tyrosine kinase inhibitor to eliminate B-ALL cells in vitro and in vivo. Thus, partial inhibition of glucose metabolism can provide a plausible adjuvant therapy to treat cancers that depend on glycolysis for survival and proliferation. </p><p>In contrast to B-ALL, B-CLL is an indolent form of cancer. Most B-CLL cells exhibited low glucose metabolic activities that were comparable with normal B cells at resting stage. Similar to chronically stimulated and anergic B cells, these B-CLL cells also failed to upregulate glucose metabolism in response to IgM stimulation. We also observed an altered amino acid and acyl-carnitine profile and increased glutaminase mRNA in B-CLL relative to normal B cells, suggesting the capability of using alternate nutrients such as glutamine in these cells. Finally, we explored the possibility of suppressing mitochondria metabolism to induce B-CLL cell death through inhibition of the nuclear hormone receptor and metabolic regulator ERRalpha. ERRalpha is known to regulate mitochondrial metabolism and was expressed higher in B-CLL than normal B cells. ERRalpha inhibition decreased viability of oncogene transformed pro-B cells, suggesting ERRalpha as a potential target for B-CLL treatment.</p><p> Collectively, this work investigates metabolic phenotype in two forms of leukemia derived from B cells. It reveals different metabolic requirements and activities in aggressive and indolent leukemia and explores different approaches to suppress metabolism in these cancers. Findings of this work shed light on how to potentially design metabolic approach to improve cancer treatment.</p> / Dissertation
|
3 |
Evaluation préclinique du potentiel thérapeutique de molécules inhibitrices de Mcl-1 au sein de la famille des oligopyridines pour le traitement des cancers de l'ovaire chimiorésistants / Preclinical evaluation of the therapeutic potential of Mcl-1 inhibitory molecules in the oligopyridine family for the treatment of chemoresistant ovarian cancersHedir, Siham 15 December 2017 (has links)
Les cancers de l’ovaire demeurant particulièrement meurtriers du fait de leur capacité à développer une résistance aux chimiothérapies conventionnelles, il est donc indispensable de mettre en place de nouvelles stratégies thérapeutiques susceptibles de surmonter la chimiorésistance pour améliorer leur prise en charge. Les travaux antérieurs de l’Unité ont démontré que les protéines anti-apoptotiques Bcl-xL et Mcl-1 coopèrent pour protéger les cellules cancéreuses ovariennes contre l’apoptose et que leur inhibition concomitante conduit à la mort des cellules chimiorésistantes. A ce jour, seuls les inhibiteurs de Bcl-xL/Bcl-2 ont démontré une efficacité en clinique, en particulier l’ABT-263 (Navitoclax). En revanche, l’inhibition de Mcl-1 reste problématique dans un contexte clinique. La recherche d’outils pharmacologiques conduisant à l’inhibition ou à l’inactivation de Mcl-1, utilisables en clinique, reste donc un enjeu majeur, d’autant que cette protéine est désormais désignée comme une cible thérapeutique prioritaire dans de nombreuses localisations tumorales. C’est dans ce contexte que mon projet de thèse s’est inscrit, l’objectif étant d’identifier et d’évaluer de nouveaux inhibiteurs pharmacologiques de Mcl-1 synthétisés par des équipes de chimistes. Dans cette optique, mon projet de thèse s’est scindé en deux parties : Dans une première étude, je me suis attachée à cribler in vitro des molécules appartenant à différentes familles chimiques (Oligopyridines dérivées du Pyridoclax, « Lead » de la première génération des oligopyridines précédemment identifié par notre équipe, ou analogues de MIM1) dans le but d’identifier de nouveaux inhibiteurs de Mcl-1 plus actifs que les molécules dont ils dérivent. Ce travail a permis d’identifier la MR31367, une molécule issue du Pyridoclax qui présente une activité pro-apoptotique plus forte que ce dernier sur plusieurs lignées tumorales ovariennes chimioresistantes. Nous avons également pu mettre en évidence sur ces mêmes modèles que plusieurs molécules issues de MIM1 exhibaient une activité pro-apoptotique amplifiée. Cette étude nous a également permi de mettre en évidence une relation structure activité permettant de classer ces molécules en inhibiteurs spécifiques de Mcl-1 et « dual-inhibiteur » de Mcl-1 et Bcl-xL. Dans une seconde étude, mon travail a consisté en l’évaluation préclinique du sel de Pyridoclax. Nous avons étudié l’effet de différentes doses de Pyridoclax administré par différentes voies d’administration, en agent seul ou en combinaison avec l’ABT-263 sur différents modèles tumoraux établis à partir des lignées chimiorésistantes de cancers ovariens. Nous avons ainsi pu mettre en évidence un effet anti-tumoral du Pyridoclax (20 mg/kg/j) administré par voie IV en agent seul sur des 2 modèles des 3 modèles de xénogreffes, et cela sans toxicité avérée. Ces résultats prometteurs ouvrent des perspectives intéressantes quant à l’utilisation d’inhibiteurs pharmacologiques de Mcl-1 pour le traitement des cancers de l’ovaire / Ovarian cancer is the most leading cause of death from gynecologic malignancies because of its late diagnosis and its ability to develop chemoresistance to conventional therapies. It is now essential to develop new therapeutic strategies to overcome this chemoresistance and improve patient care. Our laboratory has demonstrated the overexpression of the Bcl-2 anti-apoptotic proteins Bcl-xL and Mcl-1 and their cooperation to protect ovarian cancer cells from apoptosis. Currently, the clinically relevant pharmacologic inhibition of Bcl-xL is available using ABT-263 (Navitoclax). However, selective direct Mcl-1 inhibition remained a challenge. This protein is one of the most important anti-apoptotic member which is expressed in multiple cancer types and is at the origin of the acquired resistance to chemotherapy and Bcl-2 family inhibitors (Navitoclax, Venetoclax). Thus, Mcl-1 inhibition represents a major challenge for the clinical success of the Bcl-2 family inhibitors. In this context, I was interested in identifying and evaluating new Mcl-1 inhibitors designed and synthetized by different chemistry research teams. My project was focused on two aspects. In the first part, we have evaluated the cytotoxic effect of different molecules derived from 2 Mcl-1 inhibitors, the Pyridoclax from the oligopyridine family and MIM1. The screening of 8 Noxa-mimetic molecules derived from Pyridoclax allowed us to identify MR31367, one of the most potent oligopyridine molecules that shows a stronger anti-apoptotic activity than Pyridoclax (15μM) and sensitizes different chemoresistant ovarian cancer cell lines (IGROV1-R10, SKOV-3 and A2780) to anti-Bcl-xL strategies (ABT-737, siRNA). Furthermore, we have evaluated the pro-apoptotic activity of 14 MIM1 derivative molecules using the same cellular model. This study has demonstrated that most of these derivatives have greater pro-apoptotic activity than MIM1. We have also established the structure-activity relationship leading to classify these molecules as “Mcl-1 inhibitors” or as “dual inhibitors” of Mcl-1 and Bcl-xL.The second part of my project was focused on the preclinical evaluation of Pyridoclax hydrochlorid. We have analyzed the antitumor activity of Pyridoclax hydrochlorid in several subcutaneous xenografts derived from human ovarian cancer cell lines (IGROV1-R10, SKOV-3 and A2780). Different routes of Pyridoclax hydrochlorid administration were tested (oral, IV and IT) and its antitumor effect was analyzed at different doses as single agent or in combination with ABT-263 (100mg/kg). This study highlighted an effective antitumor activity of 20mg/kg of Pyridoclax hydrochlorid administered intravenously as single agent in two of three xenograft models without any side effects. This results open up interesting perspectives for the clinical use of Mcl-1 inhibitors to improve the clinical management of ovarian cancer
|
4 |
Single molecule fluorescence microscopy image analysis for the study of the 2D motion of cellulases and Bcl-2 family proteinsRose, Markus January 2020 (has links)
Biological systems carry inherent complexity, which pose difficulties observing behavioural properties, such as diffusion coefficients, kinetic constants and state switching occurrences. With constantly improving computing power and microscopy technologies, single molecule methods have become a viable alternative when probing the behaviour of proteins, enzymes, lipids and other molecules. Processed microscopy images and videos provide information such as particle intensities and trajectories, avoiding ensemble averaging and therefore allowing for a detailed breakdown of particle mobility and interactions.
A single particle tracking (SPT) algorithm was developed which implements detection, localization and position linking on image stacks. Sub-pixel precise detection is done via either centroid determination, Gaussian fit, or radial symmetry centres, while tracking makes use of distance based global cost optimization. The detection algorithm is also used for single particle spectroscopy, where intensity information is used to determine the size of oligomers, as well as their interaction with other molecules through channel intensity cross-correlation. The algorithm underwent benchmarking with simulated videos and was applied to three different biological systems with comparison to other established methods of analysis.
The first system studied was the diffusion of the fluorescent lipophilic dye DiD in a five-component mitochondria-like solid-supported lipid bilayer. Comparing line-scanning fluorescence correlation spectroscopy (FCS) and single particle tracking, the measured diffusion coefficients were found to be statistically different, with DFCS = 3 μm2s-1 and DSPT = 2 μm2s-1, indicating different operational ranges for the two methods. FCS outperforms SPT when the diffusion coefficient exceeds 1 μm2s-1, making it ideal for lipid diffusion in fluid membranes and proteins in solution with weak membrane interaction. SPT is best suited for mobile and immobile membrane inserted proteins, as well as lipid diffusion in viscous membranes.
The second system studied was the interaction between the two proteins Bax and Bid when inserted in a membrane. Bax and Bid are both members of the Bcl-2 family of proteins, which plays a vital role in the apoptosis mechanism, by inducing mitochondrial outer membrane permeabilization. To study this system with single particle spectroscopy, fluorescently labelled Bax and truncated Bid (tBid) were imaged when interacting with a mitochondria-like supported lipid bilayer with confocal microscopy. Immobile and mobile particles were detected and distinguished based on the eccentricity of the observed fluorescence spot. The intensity of the particle signal was used to determine oligomer type (homo-oligomerization) while the interaction with the particles' counterpart (hetero-oligomerization) was determined by channel cross-correlation. This allowed the measurement of the 2D-KD values for mobile (0.6 μm-2) and immobile (0.08 μm-2) Bax/tBid complexes, showing that the degree of insertion of the proteins in the membrane greatly affect their affinity for each other.
The third and final system studied was the motion of cellulases on cellulose fibers. Enzymatic hydrolysis of crystalline cellulose is a costly step in the generation of fermentable sugars for biofuel production. Due to the complex structure and many possible interaction states of the enzymes with cellulose, single particle tracking is a well-adapted technique to the gathering of information on the enzyme dynamics, which is essential for process optimization. The movement of cellulases on cellulose substrate was observed via labelled Thermobifidia fusca Cel5A, Cel6B and Cel9A on bacterial micro-crystalline cellulose substrate. The detected trajectories were analyzed using multiple diffusion models. A simple one-state diffusion model was insufficient to describe the observed radial displacement distributions and so a two-state model was introduced and confronted with the data using conventional least-squares fits , as well as a hidden Markov approach. The diffusion coefficients of the two states are found to be on the order of Dfast = 10-3 μm2s-1 and Dslow = 10-4 μm2s-1, with the slow state being more stable and therefore more likely to occur.
Single particle tracking can give us better insight into complex interactions, such as synergistic binding of proteins existing in several different states and processive enzymatic behaviour, where ensemble averaging techniques can fall short. The uses of single molecule methods are plentiful and with the current rise of machine learning, higher levels of abstraction will provide us with more detailed insights into biological processes, driving promising developments in the medical field, as well as new technologies in many sectors of industry. / Thesis / Doctor of Science (PhD) / Proteins are the motors that drive most cellular processes, for example steering a cell’s life
cycle, or decomposing sources of nutrients. Being able to observe the motion of individual
proteins is key to understanding their behaviour. In this work a single particle tracking
(SPT) program was developed to extract protein trajectories from fluorescence microscopy
experiments. With this tool-set we investigated the following two systems.
The first system of interest is the Bcl-2 protein family, which is vital during the pro-
grammed cell death at the end of each cell’s life span. The failure of a controlled cell death
can have dire consequences, such as necrosis and cancer. The Bcl-2 family proteins Bid
and Bax are active on the outer membrane of the mitochondria, where they initiate the
process of terminating the cell’s functions by forming pores. For our experiments we ar-
tificially mimicked the outer membrane of the mitochondria, introduced Bid and Bax and
observed their preferential groupings on the membrane surface. This provided indications
of the mechanisms involved during binding and pore formation.
The motivation behind the investigation of the second system is the improvement of
biofuel generation from a renewable source: plant-based biomass. Cellulases are enzymes
from bacteria or fungi that break down cellulose – one of the main building blocks of all
plant cell walls – into fermentable sugars. In fluorescence microscopy experiments a purified
cellulose substrate was used to monitor the motion of three types of cellulases. The insight
which we gained into the cellulase behaviour may allow the optimization of the process of
cellulose decomposition.
|
5 |
Úloha mitochondriální dráhy v indukci apoptózy taxany u buněk nádorů prsu / Role of the mitochondrial pathway in apoptosis induction by taxanes in breast cancer cellsSchmiedlová, Martina January 2012 (has links)
Apoptosis represents one of the cell death mechanisms which is realized after the application of taxanes in breast cancer cell lines. Apoptosis induction can be principally triggered either by outer or inner pathway. The aim of the diploma thesis is to contribute to the elucidation of role and mechanisms of the inner mitochondrial pathway of apoptosis induction after taxane application (paclitaxel and SB-T-1216) employing a model of breast carcinoma cell lines SK- BR-3 (nonfunctional p53, functional capase-3) and MCF-7 (functional p53, nonfunctional caspase-3). Specifically, we tested the effect of both employed taxanes on mitochondrial membrane potential, ROS level and the expression and localization of proteins regulating inner mitochondrial pathway. Taxane application resulted in mitochondrial membrane dissipation in SK-BR-3 cell line. However, this was not shown in MCF-7 cell line. We found no changes in Bax and Smac/DIABLO expression after taxane application in both tested cell lines. There was a decrease of Bid expression after taxane application in SK-BR-3 line, but not in MCF-7 line. Taxane application did not lead to the translocation of Bax and Bid (tBid) proteins from cytosol to mitochondria in both tested cell lines. Similarly, there was no Smac/DIABLO release from mitochondria to...
|
Page generated in 0.0482 seconds