41 |
Stem cell pathways in the basal-like breast carcinoma: the role of beta-catenin and HIF-1alpha / Vie di segnalazione staminali nel carcinoma mammario a fenotipo basale: il ruolo di beta-catenina e di HIF-1alphaD’Uva, Gabriele Matteo <1980> 10 May 2011 (has links)
Basal-like tumor is an aggressive breast carcinoma subtype that displays an expression signature similar to that of the basal/myoepithelial cells of the breast tissue. Basal-like carcinoma are characterized by over-expression of the Epidermal Growth Factor receptor (EGFR), high frequency of p53 mutations, cytoplasmic/nuclear localization of beta-catenin, overexpression of the Hypoxia inducible factor (HIF)-1alpha target Carbonic Anhydrase isoenzime 9 (CA9) and a gene expression pattern similar to that of normal and cancer stem cells, including the over-expression of the mammary stem cell markers CD44.
In this study we investigated the role of p53, EGFR, beta-catenin and HIF-1alpha in the regulation of stem cell features and genes associated with the basal-like gene expression profile. The findings reported in this investigation indicate that p53 inactivation in ductal breast carcinoma cells leads to increased EGFR mRNA and protein levels. In our experimental model, EGFR overexpression induces beta-catenin cytoplasmatic stabilization and transcriptional activity and, by that, leads to increased aggressive features including mammosphere (MS) forming and growth capacity, invasive potential and overexpression of the mammary stem cell gene CD44.
Moreover we found that EGFR/beta-catenin axis promotes hypoxia survival in breast carcinoma cells via increased CA9 expression. Indeed beta-catenin positively regulates CA9 expression upon hypoxia exposure.
Interestingly we found that beta-catenin inhibits HIF-1alpha transcriptional activity. Looking for the mechanism, we found that CA9 expression is promoted by HIF-1alpha and cytoplasmatic beta-catenin further increased it post-transcriptionally, via direct mRNA binding and stabilization. These data reveal a functional beta-catenin/HIF-1alpha interplay among hallmarks of basal-like tumors and unveil a new functional role for cytoplasmic beta-catenin in the phenotype of such tumors. Therefore it can be proposed that the interplay here described among EGFR/beta-catenin and HIF-1alpha may play a role in breast cancer stem cell survival and function.
|
42 |
Eterogeneità delle proprietà fisico – chimiche della proteina prionica patologica e variabilità fenotipica ceppo specifica nella malattia di Creutzfeldt – JakobCescatti, Maura <1980> 07 June 2011 (has links)
Transmissible spongiform encephalopathies (TSEs), or prion diseases, are neurodegenerative disorders that affect humans and mammals. Creutzfeldt-Jakob disease (CJD), the most common TSE in humans, can be sporadic (sCJD), genetic (gCJD), or acquired by infection. All TSEs are characterised by the accumulation of PrPSc, a misfolded form of the cellular protein PrPC. PrPSc is insoluble in detergents, partially resistant to proteolysis and shows a highly enriched β-sheet secondary structure. Six clinico-pathological phenotypes of sCJD have been characterized which correlate at the molecular level with two types (1 or 2) of PrPSc with distinctive physicochemical properties and the genotype at the polymorphic (methionine or valine) codon 129 of the prion protein gene. According to the protein-only hypothesis, which postulates that prions are composed exclusively of PrPSc, the strains of prions that are largely responsible for the wide spectrum of TSE phenotypes are enciphered in PrPSc conformation. In support to this view, studies mainly conducted in experimental scrapie, have shown that several prion strains can be identified based on distinguishing PrPSc biochemical properties.
To further contribute to the understanding of the molecular basis of strains and to develop more sensitive strain typing assays in humans we have analyzed PrPSc biochemical properties in two experimental setting. In the first we compared the size of the core after protease digestion and the glycoform pattern of PrPSc before and after transmission of human prions to non human primates or bank voles, whereas in the second we analyzed the conformational stability of PrPSc associated with sCJD, vCJD or fCJD using guanidine hydrochloride (GdnHCl) as denaturant.
Combining the results of the two studies, we were able to distinguish five human strains for at least one biochemical property. The present data extend our knowledge about the extent of strain variation and its relationship with PrPSc properties in human TSEs.
|
43 |
Ruolo delle specie reattive dell'ossigeno e di caveole/raft lipidici nella biosegnalazione in linee cellulari umaneCaliceti, Cristiana <1981> 07 June 2011 (has links)
Membrane lipid rafts are detergent-resistant microdomains containing glycosphingolipids, cholesterol and glycosylphosphatidylinositol-linked proteins; they seem to be actively involved in many cellular processes including signal transduction, apoptosis, cell adhesion and migration. Lipid rafts may represent important functional platforms where redox signals are produced and transmitted in response to various agonists or stimuli. In addition, a new concept is emerging that could be used to define the interactions or amplification of both redox signalling and lipid raft-associated signalling. This concept is characterized by redox-mediated feed forward amplification in lipid platforms. It is proposed that lipid rafts are formed in response to various stimuli; for instance, NAD(P)H oxidase (Nox) subunits are aggregated or recruited in these platforms, increasing Nox activity. Superoxide and hydrogen peroxide generation could induce various regulatory activities, such as the induction of glucose transport activity and proliferation in leukaemia cells.
The aim of our study is to probe: i) the involvement of lipid rafts in the modulation of the glucose transporter Glut1 in human acute leukemia cells; ii) the involvement of plasma membrane caveolae/lipid rafts in VEGF-mediated redox signaling via Nox activation in human leukemic cells; iii) the role of p66shc, an adaptor protein, in VEGF signaling and ROS production in endothelial cells (ECs); iv) the role of Sindecan-2, a transmembrane heparan sulphate proteoglycan, in VEGF signaling and physiological response in ECs and v) the antioxidant and pro-apoptotic activities of simple dietary phenolic acids, i. e. caffeic, syringic and protocatechuic acids in leukemia cells, characterized by a very high ROS content.
Our results suggest that the role played by NAD(P)H oxidase-derived ROS in the regulation of glucose uptake, proliferation and migration of leukaemia and endothelial cells could likely occur through the control of lipid raft-associated signalling.
|
44 |
Biochemical and molecular aspects of the nutritional regulation of cholesterol biosynthesis / Aspetti biochimico-molecolari della regolazione nutrizionale della biosintesi del colesteroloBoschetti, Elisa <1981> 07 June 2011 (has links)
No description available.
|
45 |
ROS generate dalle NAD(P)H ossidasi nella segnalazione redox in linee cellulari leucemicheVieceli Dalla Sega, Francesco <1979> 07 June 2011 (has links)
Discovery of the Nox family has led to the concept that ROS are “intentionally” generated and are biologically functional in various cell types. Over the last decades, ROS have been shown to be involved in several physiological and pathological processes and ROS producing enzymes have been suggested as a target for drug development. The mechanism involved in the prosurvival effect of cytokines on the human acute myeloid leukaemia cell lines M07e and B1647 is investigated. A decrease in intracellular reactive oxygen species (ROS) content, glucose transport activity and cell survival was observed in the presence of inhibitors of plasma membrane ROS sources, such as DPI and apocynin, and by small interference RNA for NOX2 in M07e cells. Furthermore, Nox generated ROS are required to sustain B1647 cell viability and proliferation; in fact, antioxidants such as EUK-134 or Nox inhibitors and siRNA direct cells to apoptotic cell death, suggesting that manipulation of cellular NOX2 and NOX4 could affect survival of leukemic cells. Moreover, hydrogen peroxide has been long thought to be freely diffusible but recent evidence suggest that specific mammalian aquaporin homologues (AQP8) possess the capacity to channel H2O2 across membrane. In this thesis is shown that inhibition of aquaporins diminishes intracellular ROS accumulation either when H2O2 is produced by Nox enzymes or when is added exogenously to the medium. These data suggest that specific inhibition of Nox enzymes and AQP8 could be an interesting novel anti-leukemic strategy.
|
46 |
Ruolo dei recettori degli estrogeni nella trasduzione del segnale nella neoplasia ovaricaMangano, Chiara <1981> 10 May 2011 (has links)
Oestrogen induction of cell proliferation is critical in carcinogenesis of gynaecologic tissues. The effects of oestrogens are mediated by Oestrogen receptor (ER) ERα and ERβ, which are members of the nuclear steroid receptor superfamily. The balance between the ERα/ERβ levels seems critical during carcinogenesis due to their different role in proliferation and apoptosis. SERMs are a class of drugs targeting ERs used especially in the treatment of breast cancer, that despite their usefulness, cause side effects. Therefore, it’s important to develop new active molecules without side effects.
In a previous work Andreani et al.(2007) investigated the antitumor activity of a new class of indole-derivatives in 60 different human cancer cell lines. In particular they noted that compound named 3L was able to induce a strong antiproliferative effect in cell lines derived from breast, cervix, ovary ,CNS and colon.
The aim of this thesis is to characterize the biological effect in ovarian carcinoma cells (IGROV-1), colon adenocarcinoma cells (HT29), cervix adenocarcinoma cells (HelaS3) and breast cancer cells (MCF7).
Among the effect exerted on the other cell lines, the most interesting is the cytostatic effect on IGROV-1.
In order to identify the 3L molecular target we monitored the 3L concentration in the IGROV-1 nuclear fractions. The analysis revealed that the drug localizes in the nucleus starting from 6 hrs after treatment, suggesting a nuclear target. The stimulation with oestrogen did not increase the proliferation rate in 3L treated cells, suggesting a possible involvement with oestrogen receptors.
Due to the 3L fluorescent properties, we demonstrated a colocalization between the ER and the 3L compound. In particular, a chromatin binding assay revealed the presence of a 3L-ERβ complex bound to DNA, interaction that may be the cause of the observed antiproliferative effect.
|
47 |
Exercise associated factors affecting cardiovascular health and function: from myocyte signaling to genetic variationsPassariello, Catherine <1982> 20 May 2011 (has links)
The exact mechanisms of the exercise induced adaptations is not lucid, but recent studies have delineated two means of signaling by which the adaptations occur (1) substrate availability signaling (metabolic stress) (2) hormone-receptor signaling. We have decided to specifically investigate two metabolic signaling enzymes [AMP-activated kinase (AMPK) and Sirtuin 1(SIRT1)] and two hormones [Adiponectin and Adrenergic stimulation].Tis based on four papers with the following conclusions: (1)Increase in SIRT1 activity and expression in H9c2 cells treated with phenylephrine is an adaptive response to the hypertrophic stress, mediated by AMPK. (2)The lack of optimal nutritional conditions (energetic substrates) due to a prolonged activation of AMPK can contrast the establishment of hypertrophy, possibly also by means of the negative modulation of ODC activity. (3) Our findings offer a possibile hypothesis as to the fact the the G allele on site 45 could lead to the increasd risk of Type II diabetes through a decrease in lean body mass. (4) Our results suggest that there is an ADIPOQ gene effect in relation to bone parameters. Statistical analysis show that the presence of the T allele in position 45 favors an increase in lumbar spine bone mineral content (BMC) when compared to subjects with a G allele substitution, which can be do the the increase in lean body mass in this genotype group.
|
48 |
The coupling between electron transfer and Protein/Solvent Dynamics in Photosynthetic Reaction Centers: Spectroscopic Studies in Amorphous MatricesMalferrari, Marco <1984> 27 April 2012 (has links)
We investigated at the molecular level protein/solvent interactions and their relevance in protein function through the use of amorphous matrices at room temperature. As a model protein, we used the bacterial photosynthetic reaction center (RC) of Rhodobacter sphaeroides, a pigment protein complex which catalyzes the light-induced charge separation initiating the conversion of solar into chemical energy. The thermal fluctuations of the RC and its dielectric conformational relaxation following photoexcitation have been probed by analyzing the recombination kinetics of the primary charge-separated (P+QA-) state, using time resolved optical and EPR spectroscopies. We have shown that the RC dynamics coupled to this electron transfer process can be progressively inhibited at room temperature by decreasing the water content of RC films or of RC-trehalose glassy matrices. Extensive dehydration of the amorphous matrices inhibits RC relaxation and interconversion among conformational substates to an extent comparable to that attained at cryogenic temperatures in water-glycerol samples. An isopiestic method has been developed to finely tune the hydration level of the system. We have combined FTIR spectral analysis of the combination and association bands of residual water with differential light-minus-dark FTIR and high-field EPR spectroscopy to gain information on thermodynamics of water sorption, and on structure/dynamics of the residual water molecules, of protein residues and of RC cofactors. The following main conclusions were reached: (i) the RC dynamics is slaved to that of the hydration shell; (ii) in dehydrated trehalose glasses inhibition of protein dynamics is most likely mediated by residual water molecules simultaneously bound to protein residues and sugar molecules at the protein-matrix interface; (iii) the local environment of cofactors is not involved in the conformational dynamics which stabilizes the P+QA-; (iv) this conformational relaxation appears to be rather delocalized over several aminoacidic residues as well as water molecules weakly hydrogen-bonded to the RC.
|
49 |
Nuove sonde fluorescenti per lo studio e la quantificazione del magnesio totale intracellulare / New fluorescent probes for the assessment and imaging of total intracellular magnesiumMarraccini, Chiara <1980> 05 June 2012 (has links)
Sebbene il magnesio sia essenziale per la maggior parte dei processi biologici, si conosce ancora poco sulla sua distribuzione e compartimentalizzazione intracellulare, soprattutto a causa dell’inadeguatezza delle tecniche attualmente disponibili. Per questo motivo, particolare interesse ha recentemente suscitato una famiglia di molecole fluorescenti, diaza-18-crown-6 8-idrossichinoline (DCHQ1 e suoi derivati), che mostrano un’alta specificità e affinità per il magnesio (superiore a quella delle sonde commerciali), che consente di mappare il magnesio totale intracellulare.
L’approccio sintetico alle molecole DCHQ è stato ottimizzato mediante riscaldamento alle microonde: con questa nuova metodica è stato possibile sintetizzare una famiglia di derivati con caratteristiche di fluorescenza, uptake, ritenzione e localizzazione intracellulare potenziate rispetto alla capostipite DCHQ1.
Il derivato acetometossi estere (DCHQ3), idrolizzato dalle esterasi cellulari, ha mostrato un miglior uptake e ritenzione intracellulare; le lunghe catene laterali alchiliche della sonda DCHQ4, invece, hanno conferito a questo derivato maggiore lipofilicità e, di conseguenza, maggiore affinità per le membrane; con l’inserimento di gruppi laterali aromatici, infine, si sono ottenute due sonde (DCHQ5 e DCHQ6) molto fluorescenti e altamente ritenute all’interno delle cellule anche dopo i lavaggi.
Il derivato fenilico DCHQ5 si è dimostrato, inoltre, utilizzabile anche per saggi fluorimetrici quantitativi del magnesio totale in campioni cellulari molto piccoli; in più, grazie all’alta ritenzione cellulare, è stato usato per monitorare e quantificare l’efflusso di magnesio attraverso la membrana plasmatica in risposta a stimolazione con cAMP.
I risultati presentati in questa tesi mostrano che i DCHQ-derivati potranno rappresentare in futuro uno strumento versatile per lo studio della distribuzione e dell’omeostasi del magnesio cellulare. In particolare la sonda DCHQ5 ha mostrato l’ulteriore peculiarità di essere eccitabile sia nell’UV che nel visibile, e potrebbe essere quindi utilizzata con successo in un’ampia varietà di misure di fluorescenza, fornendo un contributo importante per la comprensione del ruolo di questo importante elemento. / Although magnesium is essential for a number of biological processes crucial for cell life, its distribution and intracellular compartimentalization have not been thoroughly elucidated yet, mainly because of the inadequacy of the available techniques to map intracellular magnesium distribution. For this reason, particular interest has been recently raised by a family of fluorescent molecules, diaza-18-crown-6 8-hydroxyquinolines (DCHQ1 and its derivatives), that show a remarkable affinity and specificity for magnesium, higher than all the commercially available probes, thus permitting the detection of the total intracellular magnesium.
The synthetic approach to DCHQ has been optimized using microwave heating: with this new procedure a variety of substituted DCHQ derivatives with improved fluorescence, uptake and selective localization with respect to the original reference material (DCHQ1) could be easily generated.
Enhanced uptake has been achieved with an acetoxymethyl ester derivative (DCHQ3) that is recognized by the intracellular esterases. Moreover, the insertion of two long hydrophobic side chains (DCHQ4) allowed a better staining of the membranes due to its high affinity to the lipophilic environment. Finally, the introduction of aromatic side groups (DCHQ5 and DCHQ6) enhanced the fluorescence response in cells and also improved intracellular uptake and retention of the probes even after washing.
The phenyl-derivative DCHQ5, in particular, can also be used for quantitative fluorimetric assays of total magnesium in very small samples; moreover, thanks to the high cellular retention, DCHQ5 has been used in monitoring and quantifying the total Mg efflux across the membrane in response to cAMP stimulation. Finally, its unique feature of being excitable both in the UV and visible range of wavelength, together with the high fluorescence in response to cation binding, led us to hypothesize that this molecule could act as an effective tool for shedding light on total intracellular magnesium distribution and homeostasis.
|
50 |
Neuroinflammation and the role of glia: relevance for neurodegenerative and neurosupportive roles / Ruolo della glia nel mantenimento e nella degenerazione neuronale durante la neuroinfiammazioneMotori, Elisa <1983> 05 June 2012 (has links)
Inflammation is thought to contribute to the pathogenesis of neurodegenerative diseases. Among the resident population of cells in the brain, astroglia have been suggested to actively participate in the induction and regulation of neuroinflammation by controlling the secretion of local mediators. However, the initial cellular mechanisms by which astrocytes react to pro-inflammatory molecules are still unclear. Our study identified mitochondria as highly sensitive organelles that rapidly respond to inflammatory stimuli. Time-lapse video microscopy revealed that mitochondrial morphology, dynamics and motility are drastically altered upon inflammation, resulting in perinuclear clustering of mitochondria. These mitochondrial rearrangements are accompanied by an increased formation of reactive oxygen species and a recruitment of autophagic vacuoles. 24 to 48 hours after the acute inflammatory stimulus, however, the mitochondrial network is re-established. Strikingly, the recovery of a tubular mitochondrial network is abolished in astrocytes with a defective autophagic response, indicating that activation of autophagy is required to restore mitochondrial dynamics. By employing co-cultivation assays we observed that primary cortical neurons undergo degeneration in the presence of inflamed astrocytes. However, this effect was not observed when the primary neurons were grown in conditioned medium derived from inflamed astrocytes, suggesting that a direct contact between astrocytes and neurons mediates neuronal dysfunction upon inflammation. Our results suggest that astrocytes react to inflammatory stimuli by transiently rearranging their mitochondria, a process that involves the autophagic machinery. / È ormai assodato che la neuro infiammazione costituisce una caratteristica comune a numerose patologie neurodegenerative. Tra le cellule gliali che mediano la risposta infiammatoria nel sistema nervoso centrale, gli astrociti rivestono un ruolo particolarmente importante in quanto, oltre a rispondere allo stimolo di molecole pro-infiammatorie esogene o prodotte dalla stessa microglia attivata, producono anche fattori di crescita e neurotrofine essenziali per la sopravvivenza della cellula neuronale. Tuttavia, i meccanismi subcellulari che mediano la prima risposta degli astrociti a stimoli pro-infiammatori non sono ben noti. I nostri dati suggeriscono che i mitocondri sono uno dei primi target a rispondere all’infiammazione. Come dimostrato da indagini di microscopia time-lapse, l’infiammazione induce alterazioni delle dinamiche e della morfologia mitocondriali, con formazione di cluster mitocondriali perinucleari. Questi fenomeni sono accompagnati da un incremento nella produzione di ROS e dall’induzione di autofagia. Tuttavia le alterazioni sopra descritte sono transienti, dal momento esse si risolvono nell’arco di 24-48h. In particolare, la rimozione dell’autofagia determina l’impossibilità da parte degli astrociti di ripristinare una corretta funzionalità mitocondriale in seguito ad infiammazione, indice del fatto che l’autofagia svolge un ruolo-chiave nel quality control dei mitocondri in questo modello. Abbiamo inoltre investigato gli effetti mediati dagli astrociti sulla vitalità neuronale in un sistema di co-culture, e abbiamo osservato che l’infiammazione induce neurotossicità: lo stesso effetto viene a mancare se si effettua l’aggiunta di mezzo condizionato da astrociti infiammati su colture pure di neuroni, suggerendo che nel nostro modello il contatto diretto tra astrociti e neuroni è fondamentale per indurre disfunzione neuronale a seguito di infiammazione. Nell’insieme, questi dati sugggeriscono che l’infiammazione induce alterazioni temporanee della funzionalità mitocondriali associate ad autofagia.
|
Page generated in 0.0677 seconds