• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 33
  • 29
  • Tagged with
  • 62
  • 62
  • 62
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Nuove strategie in grado di proteggere dal danno indotto da micotossine

Costa, Stefano <1974> 04 May 2007 (has links)
No description available.
12

Ruolo dei geni Notch nell'epatocarcinoma umano

Giovannini, Catia <1975> 04 May 2007 (has links)
No description available.
13

Indagine sul coinvolgimento del sistema neuropeptidergico nocicettina/recettore NOP a carico della trasmissione nocicettiva

Lopetuso, Giuseppe <1977> 04 May 2007 (has links)
Oggetto di studio in questa tesi è stato il ruolo modulatorio svolto dal neuropeptide nocicettina/orfanina FQ a carico della trasmissione nocicettiva. A scopo introduttivo, sono state illustrate le conoscenze attuali sul sistema nocicettina-NOP; sono state descritte le funzioni, la struttura e la distribuzione del recettore NOP, le azioni farmacologiche finora note e la distribuzione della nocicettina stessa al livello del S.N.C. e in periferia. Lo studio è stato condotto principalmente con due approcci differenti A) E’ stata studiata la capacità della nocicettina esogena o di suoi analoghi agonisti e antagonisti, di modificare la trasmissione nocicettiva. B) Sono state studiate le variazioni a carico del sistema endogeno nocicettina/recettore NOP in seguito a trattamenti di tipo farmacologico. A) E’ stata indagata la capacità della nocicettina e degli analoghi sintetici [Arg14, Lys15]N/OFQ e UFP-101 di modificare la soglia nocicettiva nel ratto, rilevata con il test del tail-flick, a seguito di somministrazione diretta nello spazio subaracnoideo, in confronto con la nocicettina stessa. La somministrazione intratecale del neuropeptide nocicettina (10 nmol/ratto) ha determinato un innalzamento statisticamente significativo delle latenze di risposta al test del tail-flick. L’analogo [Arg14, Lys15]N/OFQ è stato somministrato alla dose di 1 nmole/ratto i.t. provocando un innalzamento massimale delle soglie di latenza per tutto il periodo di osservazione, mentre alla dose 0,2 nmoli/ratto i.t ha provocato un effetto antinocicettivo sottomassimale pur dimostrandosi significativo rispetto ai controlli (p < 0,05 vs controlli a tutti i tempi di rilevazione). Il composto antagonista UFP-101 è risultato capace di antagonizzare l’azione sulla soglia analgesica sia della nocicettina sia dell’analogo [Arg14, Lys15]N/OFQ nel suo dosaggio minore, mentre contro la dose di 1 nmole/ratto i.t ha prodotto solamente una riduzione di effetto. Anche la somministrazione intratecale di MAP-N/OFQ si è dimostrata in grado di modificare la soglia nocicettiva determinata mediante il test del tail-flick, nel ratto, in modo dose dipendente. differentementeuna seconda somministrazione di MAP-N/OFQ dopo 24 ore, si è dimostrata totalmente inefficace nel modificare la soglia nocicettiva nei ratti precedentemente trattati, pur permanendo la loro suscettibilità all’azione analgesica della morfina, mostrando quindi il rapido sviluppo di tolerance al potente peptide nocicettinergico somministrato per via i.t.. Inoltre l’antagonista UFP-101 oltre ad essere ingrado di antagonizzare l’effetto della MAP-N/OFQ, ha mostrato la capacità di ridurre la tolerance sviluppata nei confronti del dendrimero. La somministrazione di MAP-N/OFQ per via i.c.v. ha prodotto variazione della soglia nocicettiva, producendo un innalzamento del volore soglia, dato contrastante con la maggior parte dei dati riguardanti la nocicettina in letteratura. Ha invece replicato l’effetto di antagonismo funzionale nei confronti della morfina, la quale dopo somministrazione di MAP-N/OFQ è risultata essere incapace di modificare la soglia nocicettiva nel ratto. Tale effetto perdura dopo 24 ore, quando una somministrazione di morfina produce un effetto analgesico inversamente proporzionale alla dose ricevuta di MAP-N/OFQ 24 ore prima. E’stato indagato il possibile ruolo neuromodulatorio del neuropeptide nocicettina esogeno, nell’analgesia prodotta da un farmaco di natura non oppiacea. In tal senso si è proceduto ad indagare l’eventuale capacità della nocicettina esogena, somministrata per via intracerebroventricolare e del suo analogo [Arg14, Lys15]N/OFQ, di antagonizzare l’analgesia prodotta dal farmaco paracetamolo. La nocicettina ha evidenziato la capacità di antagonizzare il potere antinocicettivo del paracetamolo fino a bloccarne completamente l’effetto al dosaggio più elevato, mostrando quindi proprietà antagonista dose-dipendente. Inoltre l’UFP-101, che di per se non altera l’analgesia indotta da paracetamolo, è ingrado di antagonizzare l’effetto della nocicettina sul paracetamolo in maniera dose-dipendente. Medesimo è risultato il comportamento dell’analogo della nocicettina, la Arg-Lys nocicettina. B) Sono state indagate le relazioni tra il sistema nocicettina/NOP e le proprietà farmacologiche di un noto farmaco oppiaceo quale la buprenorfina, le cui peculiari caratteristiche farmacodinamiche sano state recentemente collegate alla sua capacità di agire come agonista diretto al recettore NOP. In tal senso si è proceduto ad osservare l’effetto della somministrazione di buprenorfina sull’ assetto recettoriale di NOP, inseguito ad un trattamento prolungato con somministrazione sottocutanea mediante minipompe osmotiche nel ratto, rilevando successivamente, tramite uno studio di binding, le variazioni della densità recettoriale di NOP in alcune aree di interesse per la trasmissione nocicettiva. Sia nell’ippocampo che nel talamo e nella frontal cortex, la somministrazione prolungata di buprenorfina ha causato una riduzione significativa della densità recettoriale di NOP. Come ultimo aspetto indagato, al fine di determinare la presenza del neuropeptide nel liquido cerebrospinale e le sue eventuali modificazioni a seguito di manipolazioni farmacologiche e non farmacologiche, è stata messa a punto una metodica di perfusione dello spazio subaracnoideo nel ratto, che consentisse di ottenere materiale biologico su cui compiere la ricerca e quantificazione della presenza di nocicettina mediante dosaggio radioimmunologico. La perfusione di CSF artificiale arricchito di ione potassio ad una concentrazione pari a 60 mM ha evidenziato la possibilità di stimolare la liberazione della nocicettina nel liquido cerebrospinale di ratto, suggerendo quindi una sua provenienza da elementi eccitabili. E’ stato quindi possibile osservare l’andamento dei livelli di peptide a seguito della stimolazione nocicettiva prodotta da due agenti irritanti con caratteristiche differenti, la carragenina e la formalina. La somministrazione sottocutanea di carragenina (100 µl al 3 %) nella regione subplantare di entrambe le zampe posteriori del ratto non ha determinato alterazioni significative dei livelli di neuropeptide. Invece, la somministrazione di formalina (50 µl al 5 %), dopo un iniziale periodo di 30 minuti, ha causato un incremento significativo della liberazione di N/OFQ a partire dal terzo intervallo di raccolta seguente la somministrazione della sostanza. Questo rispecchia l’andamento di risposta al formalin test ottenuto anche mediante test di natura differente dagli analgesimetrici (es. comportamentale, elettrofisiologico), in quest’ottica l’aumento di nocicettina può essere interpretato come un evento dovuto alla sensibilizzazione centrale all’effetto pronocicettivo.
14

Manipolazione del metabolismo degli xenobiotici da frutti "biologici" e "convenzionali" ed attività chemiopreventiva

Stradiotti, Alessandro <1973> 04 May 2007 (has links)
No description available.
15

Baclofen e D-cicloserina come potenziali strumenti terapeutici nella dipendenza da sostanze: studi preclinici nel ratto

Ricci, Francesca <1978> 04 May 2007 (has links)
No description available.
16

Effetti neuroprotettivi del sulforafane in modelli in vitro di neurodegenerazione

Morroni, Fabiana <1978> 04 May 2007 (has links)
No description available.
17

Expression of the repressor element-1 silencing transcription factor (REST) is regulated by IGF-I and PKC in human neuroblastoma cells

Baiula, Monica <1978> 06 June 2008 (has links)
The repressor element 1-silencing transcription factor (REST) was first identified as a protein that binds to a 21-bp DNA sequence element (known as repressor element 1 (RE1)) resulting in transcriptional repression of the neural-specific genes [Chong et al., 1995; Schoenherr and Anderson, 1995]. The original proposed role for REST was that of a factor responsible for restricting neuronal gene expression to the nervous system by silencing expression of these genes in non-neuronal cells. Although it was initially thought to repress neuronal genes in non-neuronal cells, the role of REST is complex and tissue dependent. In this study I investigated any role played by REST in the induction and patterning of differentiation of SH-SY5Y human neuroblastoma cells exposed to IGF-I. and phorbol 12- myristate 13-acetate (PMA) To down-regulate REST expression we developed an antisense (AS) strategy based on the use of phosphorothioate oligonucleotides (ODNs). In order to evaluate REST mRNA levels, we developed a real-time PCR technique and REST protein levels were evaluated by western blotting. Results showed that nuclear REST is increased in SH-SY5Y neuroblastoma cells cultured in SFM and exposed to IGF-I for 2-days and it then declines in 5-day-treated cells concomitant with a progressive neurite extension. Also the phorbol ester PMA was able to increase nuclear REST levels after 3-days treatment concomitant to neuronal differentiation of neuroblastoma cells, whereas, at later stages, it is down-regulated. Supporting these data, the exposure to PKC inhibitors (GF10923X and Gö6976) and PMA (16nM) reverted the effects observed with PMA alone. REST levels were related to morphological differentiation, expression of growth coneassociated protein 43 (GAP-43; a gene not regulated by REST) and of synapsin I and βIII tubulin (genes regulated by REST), proteins involved in the early stage of neuronal development. We observed that differentiation of SH-SY5Y cells by IGF-I and PMA was accompanied by a significant increase of these neuronal markers, an effect that was concomitant with REST decrease. In order to relate the decreased REST expression with a progressive neurite extension, I investigated any possible involvement of the ubiquitin–proteasome system (UPS), a multienzymatic pathway which degrades polyubiquinated soluble cytoplasmic proteins [Pickart and Cohen, 2004]. For this purpose, SH-SY5Y cells are concomitantly exposed to PMA and the proteasome inhibitor MG132. In SH-SY5Y exposed to PMA and MG 132, we observed an inverse pattern of expression of synapsin I and β- tubulin III, two neuronal differentiation markers regulated by REST. Their cytoplasmic levels are reduced when compared to cells exposed to PMA alone, as a consequence of the increase of REST expression by proteasome inhibitor. The majority of proteasome substrates identified to date are marked for degradation by polyubiquitinylation; however, exceptions to this principle, are well documented [Hoyt and Coffino, 2004]. Interestingly, REST degradation seems to be completely ubiquitin-independent. The expression pattern of REST could be consistent with the theory that, during early neuronal differentiation induced by IGF-I and PKC, it may help to repress the expression of several genes not yet required by the differentiation program and then it declines later. Interestingly, the observation that REST expression is progressively reduced in parallel with cell proliferation seems to indicate that the role of this transcription factor could also be related to cell survival or to counteract apotosis events [Lawinger et al., 2000] although, as shown by AS-ODN experiments, it does not seem to be directly involved in cell proliferation. Therefore, the decline of REST expression is a comparatively later event during maturation of neuroroblasts in vitro. Thus, we propose that REST is regulated by growth factors, like IGF-I, and PKC activators in a time-dependent manner: it is elevated during early steps of neural induction and could contribute to down-regulate genes not yet required by the differentiation program while it declines later for the acquisition of neural phenotypes, concomitantly with a progressive neurite extension. This later decline is regulated by the proteasome system activation in an ubiquitin-indipendent way and adds more evidences to the hypothesis that REST down-regulation contributes to differentiation and arrest of proliferation of neuroblastoma cells. Finally, the glycosylation pattern of the REST protein was analysed, moving from the observation that the molecular weight calculated on REST sequence is about 116 kDa but using western blotting this transcription factor appears to have distinct apparent molecular weight (see Table 1.1): this difference could be explained by post-translational modifications of the proteins, like glycosylation. In fact recently, several studies underlined the importance of O-glycosylation in modulating transcriptional silencing, protein phosphorylation, protein degradation by proteasome and protein–protein interactions [Julenius et al., 2005; Zachara and Hart, 2006]. Deglycosilating analysis showed that REST protein in SH-SY5Y and HEK293 cells is Oglycosylated and not N-glycosylated. Moreover, using several combination of deglycosilating enzymes it is possible to hypothesize the presence of Gal-β(1-3)-GalNAc residues on the endogenous REST, while β(1-4)-linked galactose residues may be present on recombinant REST protein expressed in HEK293 cells. However, the O-glycosylation process produces an immense multiplicity of chemical structures and monosaccharides must be sequentially hydrolyzed by a series of exoglycosidase. Further experiments are needed to characterize all the post-translational modification of the transcription factor REST.
18

Inibizione selettiva del gene MYCN mediante PNA (acidi peptido nucleici) anti-gene nel rabdomiosarcoma umano

Purgato, Stefania <1978> 06 June 2008 (has links)
MYCN oncogene amplification/expression is a feature of many childhood tumors, and some adult tumors, and it is associated with poor prognosis. While MYC expression is ubiquitary, MYCN has a restricted expression after birth and it is an ideal target for an effective therapy. PNAs belong to the latest class of nucleic acid-based therapeutics, and they can bind chromosomal DNA and block gene transcription (anti-gene activity). We have developed an anti-gene PNA that targets specifically the MYCN gene to block its transcription. We report for the first time MYCN targeted inhibition in Rhabdomyosarcoma (RMS) by the anti-MYCN-PNA in RMS cell lines (four ARMS and four ERMS) and in a xenograft RMS mouse model. Rhabdomyosarcoma is the most common pediatric soft-tissue sarcoma, comprising two main subgroups [Alveolar (ARMS) and Embryonal (ERMS)]. ARMS is associated with a poorer prognosis. MYCN amplification is a feature of both the ERMS and ARMS, but the MYCN amplification and expression levels shows a significant correlation and are greater in ARMS, in which they are associated with adverse outcome. We found that MYCN mRNA and protein levels were higher in the four ARMS (RH30, RH4, RH28 and RMZ-RC2) than in the four ERMS (RH36, SMS-CTR, CCA and RD) cell lines. The potent inhibition of MYCN transcription was highly specific, it did not affect the MYC expression, it was followed by cell-growth inhibition in the RMS cell lines which correlated with the MYCN expression rate, and it led to complete cell-growth inhibition in ARMS cells. We used a mutated- PNA as control. MYCN silencing induced apoptosis. Global gene expression analysis (Affymetrix microarrays) in ARMS cells treated with the anti-MYCN-PNA revealed genes specifically induced or repressed, with both genes previously described as targets of N-myc or Myc, and new genes undescribed as targets of N-myc or Myc (mainly involved in cell cycle, apoptosis, cell motility, metastasis, angiogenesis and muscle development). The changes in the expression of the most relevant genes were confirmed by Real-Time PCR and western blot, and their expression after the MYCN silencing was evaluated in the other RMS cell lines. The in vivo study, using an ARMS xenograft murine model evaluated by micro-PET, showed a complete elimination of the metabolic tumor signal in most of the cases (70%) after anti-MYCN-PNA treatment (without toxicity), whereas treatment with the mutated-PNA had no effect. Our results strongly support the development of MYCN anti-gene therapy for the treatment of RMS, particularly for poor prognosis ARMS, and of other MYCN-expressing tumors.
19

Transcriptional regulation of human mu-opioid receptor gene: functional characterization of activating and inhibitory transcription factors

Bedini, Andrea <1979> 06 June 2008 (has links)
The organization of the nervous and immune systems is characterized by obvious differences and striking parallels. Both systems need to relay information across very short and very long distances. The nervous system communicates over both long and short ranges primarily by means of more or less hardwired intercellular connections, consisting of axons, dendrites, and synapses. Longrange communication in the immune system occurs mainly via the ordered and guided migration of immune cells and systemically acting soluble factors such as antibodies, cytokines, and chemokines. Its short-range communication either is mediated by locally acting soluble factors or transpires during direct cell–cell contact across specialized areas called “immunological synapses” (Kirschensteiner et al., 2003). These parallels in intercellular communication are complemented by a complex array of factors that induce cell growth and differentiation: these factors in the immune system are called cytokines; in the nervous system, they are called neurotrophic factors. Neither the cytokines nor the neurotrophic factors appear to be completely exclusive to either system (Neumann et al., 2002). In particular, mounting evidence indicates that some of the most potent members of the neurotrophin family, for example, nerve growth factor (NGF) and brainderived neurotrophic factor (BDNF), act on or are produced by immune cells (Kerschensteiner et al., 1999) There are, however, other neurotrophic factors, for example the insulin-like growth factor-1 (IGF-1), that can behave similarly (Kermer et al., 2000). These factors may allow the two systems to “cross-talk” and eventually may provide a molecular explanation for the reports that inflammation after central nervous system (CNS) injury has beneficial effects (Moalem et al., 1999). In order to shed some more light on such a cross-talk, therefore, transcription factors modulating mu-opioid receptor (MOPr) expression in neurons and immune cells are here investigated. More precisely, I focused my attention on IGF-I modulation of MOPr in neurons and T-cell receptor induction of MOPr expression in T-lymphocytes. Three different opioid receptors [mu (MOPr), delta (DOPr), and kappa (KOPr)] belonging to the G-protein coupled receptor super-family have been cloned. They are activated by structurallyrelated exogenous opioids or endogenous opioid peptides, and contribute to the regulation of several functions including pain transmission, respiration, cardiac and gastrointestinal functions, and immune response (Zollner and Stein 2007). MOPr is expressed mainly in the central nervous system where it regulates morphine-induced analgesia, tolerance and dependence (Mayer and Hollt 2006). Recently, induction of MOPr expression in different immune cells induced by cytokines has been reported (Kraus et al., 2001; Kraus et al., 2003). The human mu-opioid receptor gene (OPRM1) promoter is of the TATA-less type and has clusters of potential binding sites for different transcription factors (Law et al. 2004). Several studies, primarily focused on the upstream region of the OPRM1 promoter, have investigated transcriptional regulation of MOPr expression. Presently, however, it is still not completely clear how positive and negative transcription regulators cooperatively coordinate cellor tissue-specific transcription of the OPRM1 gene, and how specific growth factors influence its expression. IGF-I and its receptors are widely distributed throughout the nervous system during development, and their involvement in neurogenesis has been extensively investigated (Arsenijevic et al. 1998; van Golen and Feldman 2000). As previously mentioned, such neurotrophic factors can be also produced and/or act on immune cells (Kerschenseteiner et al., 2003). Most of the physiologic effects of IGF-I are mediated by the type I IGF surface receptor which, after ligand binding-induced autophosphorylation, associates with specific adaptor proteins and activates different second messengers (Bondy and Cheng 2004). These include: phosphatidylinositol 3-kinase, mitogen-activated protein kinase (Vincent and Feldman 2002; Di Toro et al. 2005) and members of the Janus kinase (JAK)/STAT3 signalling pathway (Zong et al. 2000; Yadav et al. 2005). REST plays a complex role in neuronal cells by differentially repressing target gene expression (Lunyak et al. 2004; Coulson 2005; Ballas and Mandel 2005). REST expression decreases during neurogenesis, but has been detected in the adult rat brain (Palm et al. 1998) and is up-regulated in response to global ischemia (Calderone et al. 2003) and induction of epilepsy (Spencer et al. 2006). Thus, the REST concentration seems to influence its function and the expression of neuronal genes, and may have different effects in embryonic and differentiated neurons (Su et al. 2004; Sun et al. 2005). In a previous study, REST was elevated during the early stages of neural induction by IGF-I in neuroblastoma cells. REST may contribute to the down-regulation of genes not yet required by the differentiation program, but its expression decreases after five days of treatment to allow for the acquisition of neural phenotypes. Di Toro et al. proposed a model in which the extent of neurite outgrowth in differentiating neuroblastoma cells was affected by the disappearance of REST (Di Toro et al. 2005). The human mu-opioid receptor gene (OPRM1) promoter contains a DNA sequence binding the repressor element 1 silencing transcription factor (REST) that is implicated in transcriptional repression. Therefore, in the fist part of this thesis, I investigated whether insulin-like growth factor I (IGF-I), which affects various aspects of neuronal induction and maturation, regulates OPRM1 transcription in neuronal cells in the context of the potential influence of REST. A series of OPRM1-luciferase promoter/reporter constructs were transfected into two neuronal cell models, neuroblastoma-derived SH-SY5Y cells and PC12 cells. In the former, endogenous levels of human mu-opioid receptor (hMOPr) mRNA were evaluated by real-time PCR. IGF-I upregulated OPRM1 transcription in: PC12 cells lacking REST, in SH-SY5Y cells transfected with constructs deficient in the REST DNA binding element, or when REST was down-regulated in retinoic acid-differentiated cells. IGF-I activates the signal transducer and activator of transcription-3 (STAT3) signaling pathway and this transcription factor, binding to the STAT1/3 DNA element located in the promoter, increases OPRM1 transcription. T-cell receptor (TCR) recognizes peptide antigens displayed in the context of the major histocompatibility complex (MHC) and gives rise to a potent as well as branched intracellular signalling that convert naïve T-cells in mature effectors, thus significantly contributing to the genesis of a specific immune response. In the second part of my work I exposed wild type Jurkat CD4+ T-cells to a mixture of CD3 and CD28 antigens in order to fully activate TCR and study whether its signalling influence OPRM1 expression. Results were that TCR engagement determined a significant induction of OPRM1 expression through the activation of transcription factors AP-1, NF-kB and NFAT. Eventually, I investigated MOPr turnover once it has been expressed on T-cells outer membrane. It turned out that DAMGO induced MOPr internalisation and recycling, whereas morphine did not. Overall, from the data collected in this thesis we can conclude that that a reduction in REST is a critical switch enabling IGF-I to up-regulate human MOPr, helping these findings clarify how human MOPr expression is regulated in neuronal cells, and that TCR engagement up-regulates OPRM1 transcription in T-cells. My results that neurotrophic factors a and TCR engagement, as well as it is reported for cytokines, seem to up-regulate OPRM1 in both neurons and immune cells suggest an important role for MOPr as a molecular bridge between neurons and immune cells; therefore, MOPr could play a key role in the cross-talk between immune system and nervous system and in particular in the balance between pro-inflammatory and pro-nociceptive stimuli and analgesic and neuroprotective effects.
20

Genomic and non genomic effects of elevated concentration of anabolic steroids in human neuronal cells

Guarino, Goffredo <1979> 06 June 2008 (has links)
Nandrolone and other anabolic androgenic steroids (AAS) at elevated concentration can alter the expression and function of neurotransmitter systems and contribute to neuronal cell death. This effect can explain the behavioural changes, drug dependence and neuro degeneration observed in steroid abuser. Nandrolone treatment (10-8M–10-5M) caused a time- and concentration-dependent downregulation of mu opioid receptor (MOPr) transcripts in SH-SY5Y human neuroblastoma cells. This effect was prevented by the androgen receptor (AR) antagonist hydroxyflutamide. Receptor binding assays confirmed a decrease in MOPr of approximately 40% in nandrolonetreated cells. Treatment with actinomycin D (10-5M), a transcription inhibitor, revealed that nandrolone may regulate MOPr mRNA stability. In SH-SY5Y cells transfected with a human MOPr luciferase promoter/reporter construct, nandrolone did not alter the rate of gene transcription. These results suggest that nandrolone may regulate MOPr expression through post-transcriptional mechanisms requiring the AR. Cito-toxicity assays demonstrated a time- and concentration dependent decrease of cells viability in SH-SY5Y cells exposed to steroids (10-6M–10-4M). This toxic effects is independent of activation of AR and sigma-2 receptor. An increased of caspase-3 activity was observed in cells treated with Nandrolone 10-6M for 48h. Collectively, these data support the existence of two cellular mechanisms that might explain the neurological syndromes observed in steroids abuser.

Page generated in 0.0165 seconds