Spelling suggestions: "subject:"curves"" "subject:"recurves""
1 |
Optimal Pairings on BN CurvesYu, Kewei 17 August 2011 (has links)
Bilinear pairings are being used in ingenious ways to solve various protocol problems. Much research has been done on improving the efficiency of pairing computations. This thesis gives an introduction to the Tate pairing and some variants including the ate pairing, Vercauteren's pairing, and the R-ate pairing. We describe the Barreto-Naehrig (BN) family of pairing-friendly curves, and analyze three different coordinates systems (affine, projective, and jacobian) for implementing the R-ate pairing. Finally, we examine some recent work for speeding the pairing computation and provide improved estimates of the pairing costs on a particular BN curve.
|
2 |
Optimal Pairings on BN CurvesYu, Kewei 17 August 2011 (has links)
Bilinear pairings are being used in ingenious ways to solve various protocol problems. Much research has been done on improving the efficiency of pairing computations. This thesis gives an introduction to the Tate pairing and some variants including the ate pairing, Vercauteren's pairing, and the R-ate pairing. We describe the Barreto-Naehrig (BN) family of pairing-friendly curves, and analyze three different coordinates systems (affine, projective, and jacobian) for implementing the R-ate pairing. Finally, we examine some recent work for speeding the pairing computation and provide improved estimates of the pairing costs on a particular BN curve.
|
3 |
Machine-Level Software Optimization of Cryptographic ProtocolsFishbein, Dieter January 2014 (has links)
This work explores two methods for practical cryptography on mobile devices. The first method is a quantum-resistant key-exchange protocol proposed by Jao et al.. As the use of mobile devices increases, the deployment of practical cryptographic protocols designed for use on these devices is of increasing importance. Furthermore, we are faced with the possible development of a large-scale quantum computer in the near future and must take steps to prepare for this possibility. We describe the key-exchange protocol of Jao et al. and discuss their original implementation. We then describe our modifications to their scheme that make it suitable for use in mobile devices. Our code is between 18-26% faster (depending on the security level). The second is an highly optimized implementation of Miller's algorithm that efficiently computes the Optimal Ate pairing over Barreto-Naehrig curves proposed by Grewal et al.. We give an introduction to cryptographic pairings and describe the Tate pairing and its variants. We then proceed to describe Grewal et al.'s implementation of Miller's algorithm, along with their optimizations. We describe our use of hand-optimized assembly code to increase the performance of their implementation. For the Optimal Ate pairing over the BN-446 curve, our code is between 7-8% faster depending on whether the pairing uses affine or projective coordinates.
|
Page generated in 0.0349 seconds