Spelling suggestions: "subject:"heterocycle"" "subject:"azaheterocycle""
1 |
Leveraging 1,2-Azaborine's Distinct Electronic Structure to Access New Building Blocks:McConnell, Cameron Reed January 2019 (has links)
Thesis advisor: Shih-Yuan Liu / Described herein are three projects that derive from in-depth studies of the distinct electronic structure of monocyclic 1,2-dihydro-1,2-azaborine (heretofore referred to as simply 1,2-azaborine). In the first chapter, the first comprehensive review of the late-stage functionalization methods available for 1,2-azaborines as well as their bicyclic and polycyclic (BN-PAH) counterparts is presented. In the second chapter, the development of a general method for both C4 and C5 functionalization based on the building block approach is described. The distinct electronic structure of 1,2-azaborine enables the chemical separation and further functionalization of C4 and C5 borylated isomers. In the second part, the C4, C5, and C6 isomers of BN-styrene analogues were prepared using the newly developed azaborine building blocks. The corresponding polymers were synthesized and extensively characterized in order to compare the effects of the BN-bond positioning relative to the polymer chain. In the fourth and final chapter, 1,2-azaborine-containing phosphine ligands featuring a P-B bond are synthesized. A comparative electronic structure analysis is performed between the BN-phosphine ligands and their direct all-carbon counterparts. / Thesis (PhD) — Boston College, 2019. / Submitted to: Boston College. Graduate School of Arts and Sciences. / Discipline: Chemistry.
|
Page generated in 0.0455 seconds