• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • No language data
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

KINETIC STUDY OF DROPLET

Chen, Elaine 04 1900 (has links)
<p><strong> </strong></p> <p><strong> </strong></p> <p>Considerable attention has been paid to the reaction between molten iron oxide containing slag and iron droplets or solid carbon due to the critical roles it plays in various metallurgical processes. However, during the last two decades, most of the studies have been carried out on iron droplets, for which the size remains constant. Another important phenomenon, that the droplet will swell has not been paid the same attention. Knowledge of the extent of droplet swelling is essential in predicting residence times in BOF steelmaking. The objective of this study is to develop the understanding for droplet swelling and produce a predictive model that predicts droplet swelling over the range of oxygen steelmaking conditions.</p> <p>Several workers have observed swelling of high carbon droplets when exposed to oxidizing slags. In the present work, the measurements on swelling rates were made using X-ray fluoroscopy. Comparing the swelling rate with the total volume of gas evolved during the reaction, it is shown that only a small percentage of the gas generated is retained in the droplet to contribute to swelling. The gas generation rate is shown to be controlled by the rate of nucleation of CO bubbles inside the droplet. The critical supersaturation pressure for nucleation is found to be two orders of magnitude less than predicted from theory, which is in keeping with many other studies on nucleation of gases in liquids. However, the effect of surface tension, temperature and saturation pressure shows quantitative agreement with theory.</p> <p>In order to predict the droplet swelling rate, CO bubble escape rate has to be known. In this research, the escape mechanism has been proposed; it is the film rupture around the iron droplet surface. The rupture rate is mainly influenced by viscosity, surface tension and bubble size. For a given experimental condition, the calculated film thickness is 1.5 μm at the maximum drop diameter, assuming the bubble radius is 0.3 mm. The CO escape rate is 2.51 cm<sup>3</sup>/s, it agrees well with 1 to 12 cm<sup>3</sup>/s when gas escapes from steelmaking slags considering the differences of surface tensions and viscosities between metal and slag.</p> / Doctor of Philosophy (PhD)
2

Decarburization Kinetics of Fe-C-S Droplets in Oxygen Steelmaking Slags

Pomeroy, Michael D. 10 1900 (has links)
<p>The slag metal emulsion may play a significant role in the global furnace decarburization kinetics in oxygen steelmaking. In recent years, the important interaction between droplet generation rate, droplet residence time in slag and droplet decarburization rate has become more evident in the literature. The decarburization kinetics of Fe-C-S droplets in CaO-SiO2-MgO-FeO slags were investigated for highercarbon droplets (approximately 4.2 % C). The effect of slag FeO, droplet mass and Sulphur content on decarburization rate were evaluated. The limit between external and internal nucleation of CO gas was investigated. A model was developed for prediction oftime to the onset of carbon boil.</p> / Master of Science (MSc)

Page generated in 0.0763 seconds