Spelling suggestions: "subject:"blackground egmentation"" "subject:"blackground asegmentation""
1 |
Robust Background Segmentation For Use in Real-time Application : A study on using available foreground-background segmentation research for real-world application / Robust bakgrundssegmentering för använding i realtids-applikationBrynielsson, Emil January 2023 (has links)
In a world reliant on big industries to produce large quantities of more or less every product used, it is of utmost importance that the machines in such industries continue to run with minimum amounts of downtime. One way more and more providers of such industrial machines try to help their customers reduce downtime when a machine stops working or needs maintenance is through the use of remote guidance; a way of knowledge transfer from a technician to a regular employee that aims to allow the regular employee to be guided in real-time by a technician to solve the task himself, thus, not needing the technician to travel to the factory. One technology that may come to mind if you were to create such a guiding system is to use augmented reality and maybe have a technician record his or her hand and in real-time overlay this upon the videostream the onsite employee sees. This is something available today, however, to separate the hand of the technician from the background can be a complex task especially if the background is not a single colour or the hand has a similar colour to the background. These kinds of limitations to the background separation are what this thesis aims to find a solution to. This thesis addresses this challenge by creating a test dataset containing five different background scenarios that are deemed representative of what a person who would use the product most likely can find something similar to without going out of their way. In each of the five scenarios, there are two videos taken, one with a white hand and one with a hand wearing a black glove. Then a machine learning model is trained in a couple of different configurations and tested on the test scenarios. The best of the models is later also tried to run directly on a mobile phone. It was found that the machine learning model achieved rather promising background segmentation and running on the computer with a dedicated GPU real-time performance was achievable. However, running on the mobile device the processing time proved to be not sufficient.
|
2 |
Automatic Classification of Fish in Underwater Video; Pattern Matching - Affine Invariance and Beyondgundam, madhuri, Gundam, Madhuri 15 May 2015 (has links)
Underwater video is used by marine biologists to observe, identify, and quantify living marine resources. Video sequences are typically analyzed manually, which is a time consuming and laborious process. Automating this process will significantly save time and cost. This work proposes a technique for automatic fish classification in underwater video. The steps involved are background subtracting, fish region tracking and classification using features. The background processing is used to separate moving objects from their surrounding environment. Tracking associates multiple views of the same fish in consecutive frames. This step is especially important since recognizing and classifying one or a few of the views as a species of interest may allow labeling the sequence as that particular species. Shape features are extracted using Fourier descriptors from each object and are presented to nearest neighbor classifier for classification. Finally, the nearest neighbor classifier results are combined using a probabilistic-like framework to classify an entire sequence.
The majority of the existing pattern matching techniques focus on affine invariance, mainly because rotation, scale, translation and shear are common image transformations. However, in some situations, other transformations may be modeled as a small deformation on top of an affine transformation. The proposed algorithm complements the existing Fourier transform-based pattern matching methods in such a situation. First, the spatial domain pattern is decomposed into non-overlapping concentric circular rings with centers at the middle of the pattern. The Fourier transforms of the rings are computed, and are then mapped to polar domain. The algorithm assumes that the individual rings are rotated with respect to each other. The variable angles of rotation provide information about the directional features of the pattern. This angle of rotation is determined starting from the Fourier transform of the outermost ring and moving inwards to the innermost ring. Two different approaches, one using dynamic programming algorithm and second using a greedy algorithm, are used to determine the directional features of the pattern.
|
3 |
Rekonstrukce pozadí z několika fotografií / Background Reconstruction from Several PhotographsMotáček, Vladimír January 2010 (has links)
This thesis concerns the background reconstruction from several photographs (so called depopulation scene efect). There are presented methods for obtaining the background from video and discussion of their use for photographs. The greatest emphasis is placed on the Gaussian mixture model and effort to improve this algorithm due to static image. The photographs should be taken with a tripod.
|
Page generated in 0.1115 seconds