Spelling suggestions: "subject:"04bacteria - chealth aspects"" "subject:"04bacteria - byhealth aspects""
1 |
Role of resistant starch and probiotics in colon inflammationAmansec, Sarah Gracielle, Biotechnology & Biomolecular Sciences, Faculty of Science, UNSW January 2005 (has links)
An imbalance of the T cell immune response is observed in inflammatory bowel disease. Intestinal microbes have been linked to the disease and the disease process leads to severe mucosal injury and systemic translocation of bacterial products. Aminosalicylates, corticosteroids and immunomodulators reduce these aggressive activities but are associated with potentially serious adverse events. The aim of this work was to investigate the effects of administration of prebiotics and probiotics that modulate the gut microflora and modulate the immune response, in ameliorating severity of colitis. The prebiotic, high amylose maize resistant starch was used at two different concentrations. A number of Bifidobacterium and Lactobacillus strains were used as probiotics. BALB/c mice were administered the prebiotics and probiotics and intrarectally infused with 2.5 mg trinitrobenzene sulfonic acid (TNBS) in 45% ethanol, thereby generating colitis. Mucosal cytokine responses, colonic microbial profiles and disease activity indices were monitored. The 5% concentration of high amylose maize resistant starch delayed progression of TNBS colitis as evidenced by reduced weight loss, lesser tissue damage, abrogation of the expression and synthesis of IFN-?? and upregulation of IL-4 and IL-10. The 30% concentration of high amylose maize resistant starch exacerbated the inflammatory response with an increase in acetic acid, coliforms and endopores in the colonic contents. Three strains of bifidobacteria and 3 strains of lactobacilli were individually screened for their activity against TNBS colitis. Each strain had a distinctive effect on the course of colon inflammation. Lactobacillus fermentum VRI 003 was selected for further study as it provided most protection. The ratio of immunosuppressive cytokines to pro-inflammatory cytokines was restored closer to the normal T cell cytokine levels. It also reduced the incidence of translocation of enteric bacteria into the spleens. Dosing a minimum daily dose of 6x109 CFU L. fermentum VRI-003 to ulcerative colitis patients in remission and maintained on standard therapy for 6 months prevented the exacerbation of symptoms, including diarrhea and abdominal pain, and improved the patient general well being. It also suppressed production of IFN-?? and sustained IL-10 levels. Moreover, absence of endospores and lower numbers of coliforms were detected in the faeces of UC patients during L. fermentum VRI-003 treatment. In summary, 5% high amylose maize resistant starch and L. fermentum VRI 003 prevented colon inflammation by changing the nature of the T cell immune response and modifying the colonic microflora in the murine model. The clinical evidence supported these findings.
|
2 |
Role of resistant starch and probiotics in colon inflammationAmansec, Sarah Gracielle, Biotechnology & Biomolecular Sciences, Faculty of Science, UNSW January 2005 (has links)
An imbalance of the T cell immune response is observed in inflammatory bowel disease. Intestinal microbes have been linked to the disease and the disease process leads to severe mucosal injury and systemic translocation of bacterial products. Aminosalicylates, corticosteroids and immunomodulators reduce these aggressive activities but are associated with potentially serious adverse events. The aim of this work was to investigate the effects of administration of prebiotics and probiotics that modulate the gut microflora and modulate the immune response, in ameliorating severity of colitis. The prebiotic, high amylose maize resistant starch was used at two different concentrations. A number of Bifidobacterium and Lactobacillus strains were used as probiotics. BALB/c mice were administered the prebiotics and probiotics and intrarectally infused with 2.5 mg trinitrobenzene sulfonic acid (TNBS) in 45% ethanol, thereby generating colitis. Mucosal cytokine responses, colonic microbial profiles and disease activity indices were monitored. The 5% concentration of high amylose maize resistant starch delayed progression of TNBS colitis as evidenced by reduced weight loss, lesser tissue damage, abrogation of the expression and synthesis of IFN-?? and upregulation of IL-4 and IL-10. The 30% concentration of high amylose maize resistant starch exacerbated the inflammatory response with an increase in acetic acid, coliforms and endopores in the colonic contents. Three strains of bifidobacteria and 3 strains of lactobacilli were individually screened for their activity against TNBS colitis. Each strain had a distinctive effect on the course of colon inflammation. Lactobacillus fermentum VRI 003 was selected for further study as it provided most protection. The ratio of immunosuppressive cytokines to pro-inflammatory cytokines was restored closer to the normal T cell cytokine levels. It also reduced the incidence of translocation of enteric bacteria into the spleens. Dosing a minimum daily dose of 6x109 CFU L. fermentum VRI-003 to ulcerative colitis patients in remission and maintained on standard therapy for 6 months prevented the exacerbation of symptoms, including diarrhea and abdominal pain, and improved the patient general well being. It also suppressed production of IFN-?? and sustained IL-10 levels. Moreover, absence of endospores and lower numbers of coliforms were detected in the faeces of UC patients during L. fermentum VRI-003 treatment. In summary, 5% high amylose maize resistant starch and L. fermentum VRI 003 prevented colon inflammation by changing the nature of the T cell immune response and modifying the colonic microflora in the murine model. The clinical evidence supported these findings.
|
3 |
In vitro evaluation of the prebiotic effects of sugar alcohols.January 2006 (has links)
Ma Ka Ming. / Thesis (M.Phil.)--Chinese University of Hong Kong, 2006. / Includes bibliographical references (leaves 99-118). / Abstracts in English and Chinese. / Chapter Chapter 1. --- Introduction --- p.1 / Chapter 1.1 --- What are prebiotics? --- p.1 / Chapter 1.2 --- Current prebiotics and their development --- p.2-3 / Chapter 1.3 --- The intestinal microflora --- p.3-4 / Chapter 1.3.1 --- Bacteroides --- p.5 / Chapter 1.3.2 --- Bifidobacteria --- p.5 / Chapter 1.3.3 --- Clostridia --- p.5-6 / Chapter 1.3.4 --- Lactobacilli --- p.6 / Chapter 1.4 --- Bacterial colonic fermentation --- p.7-8 / Chapter 1.4.1 --- Carbohydrates metabolism in colonic bacteria --- p.8-10 / Chapter 1.4.1.1 --- Carbohydrates metabolism in Bacteroides --- p.11 / Chapter 1.4.1.2 --- Carbohydrates metabolism in Bifidobacteria --- p.11 / Chapter 1.4.1.3 --- Carbohydrates metabolism in Clostridia --- p.11 / Chapter 1.4.1.4 --- Carbohydrates metabolism in Lactobacilli --- p.12 / Chapter 1.5 --- Health benefits of prebiotics --- p.12-13 / Chapter 1.6 --- Metabolites of fermentation: Short-chain fatty acids (SCFAs) --- p.14-15 / Chapter 1.7 --- Applications of prebiotics as functional food ingredients --- p.16 / Chapter 1.8 --- Methodology for evaluating prebiotics --- p.17 / Chapter 1.8.1 --- In vivo fermentation study --- p.17 / Chapter 1.8.2 --- Human clinical study --- p.17-18 / Chapter 1.8.3 --- In vitro fermentation study --- p.18-19 / Chapter 1.9 --- Methods of bacterial enumeration --- p.19-20 / Chapter 1.9.1 --- Fluorescent in situ hybridisation --- p.20-22 / Chapter 1.9.2 --- Bacterial enumeration by automatic image analysis --- p.22-23 / Chapter 1.10 --- Sugar alcohols --- p.23 / Chapter 1.10.1 --- Sugar alcohols and their functions --- p.23-25 / Chapter 1.10.2 --- Digestion and absorption of sugar alcohols --- p.25-26 / Chapter 1.10.3 --- Metabolism of sugar alcohols in humans --- p.26 / Chapter 1.10.4 --- Adverse effect of sugar alcohols --- p.26-27 / Chapter 1.11 --- Fermentation of sugar alcohols in colonic bacteria --- p.27 / Chapter 1.12 --- Project objectives --- p.28 / Chapter Chapter 2. --- Materials and Methods --- p.29 / Chapter 2.1 --- Materials --- p.29 / Chapter 2.2 --- Static batch culture fermentation --- p.29 / Chapter 2.2.1 --- Substrate preparation --- p.29-30 / Chapter 2.2.2 --- Human fecal inoculum preparation --- p.30-31 / Chapter 2.3 --- Dry matter and organic matter disappearance in batch fermentation --- p.31 / Chapter 2.4 --- Determination of flow rate in the continuous fermentation system. --- p.32-33 / Chapter 2.5 --- Three-stage continuous fermentation culture system --- p.34 / Chapter 2.5.1 --- Initial set-up --- p.34-35 / Chapter 2.5.2 --- Continuous fermentation --- p.35-36 / Chapter 2.6 --- Validation of fluorescent in situ hybridisation (FISH) method --- p.36 / Chapter 2.6.1 --- Oligonucleotide probes for FISH --- p.36-37 / Chapter 2.6.2 --- Cultivation of pure human intestinal bacterial culture --- p.37-38 / Chapter 2.6.3 --- Validation of oligonucleotide probes for FISH --- p.38-40 / Chapter 2.7 --- Bacterial enumeration of fermentation broth by FISH --- p.41 / Chapter 2.7.1 --- Automated image analysis --- p.41-42 / Chapter 2.7.2 --- Quantification of bacteria --- p.43 / Chapter 2.8 --- Gas chromatographic determination of short-chain fatty acids (SCFAs) --- p.44-46 / Chapter 2.9 --- Statistical analysis --- p.46 / Chapter Chapter 3: --- Results and Discussion --- p.47 / Chapter 3.1 --- Dry matter and organic matter disappearance in batch fermentations --- p.47-48 / Chapter 3.2 --- Validation of genus-specific oligonucleotide probes for FISH by pure bacterial culture --- p.48-50 / Chapter 3.3 --- FISH and multi-color FISH of human fecal bacteria --- p.50-53 / Chapter 3.4 --- Enumeration of fecal bacteria with the CellC software --- p.53-54 / Chapter 3.5 --- Colonic bacterial profile in batch culture in vitro fermentation --- p.55 / Chapter 3.5.1 --- Total colonic bacteria --- p.55-56 / Chapter 3.5.2 --- Bacteroides --- p.57-59 / Chapter 3.5.3 --- Bifidobacteria --- p.60-62 / Chapter 3.5.4 --- Clostridia --- p.63-64 / Chapter 3.5.5 --- Lactobacilli --- p.65-66 / Chapter 3.6 --- Short-chain fatty acids (SCFAs) in batch in vitro fermentation --- p.67 / Chapter 3.6.1 --- Total SCFAconcentration --- p.67-68 / Chapter 3.6.2 --- Acetate --- p.68 / Chapter 3.6.3 --- Propionate --- p.69 / Chapter 3.6.4 --- Butyrate --- p.69-70 / Chapter 3.7 --- Determination of flow rate in three-stage continuous fermentation system --- p.71-73 / Chapter 3.8 --- Colonic bacterial profile in three-stage continuous fermentation system --- p.74 / Chapter 3.8.1 --- Total colonic bacteria --- p.74-75 / Chapter 3.8.2 --- Bacteroides --- p.76 / Chapter 3.8.3 --- Bifidobacteria --- p.77-78 / Chapter 3.8.4 --- Clostridia --- p.79-80 / Chapter 3.8.5 --- Lactobacilli --- p.81 / Chapter 3.9 --- SCFAs in three-stage continuous fermentation system --- p.82 / Chapter 3.9.1 --- Total SCFA concentration --- p.82-87 / Chapter 3.9.2 --- SCFA molar ratio --- p.88-89 / Chapter 3.9.3 --- Acetate --- p.90-91 / Chapter 3.9.4 --- Propionate --- p.92-93 / Chapter 3.9.5 --- Butyrate --- p.94-95 / Chapter Chapter. 4 --- Conclusions and Future Works --- p.96-98 / List of References --- p.99-117 / Related Publications --- p.118
|
4 |
Probiotics and prebiotics as a therapeutic strategy for inflammatory bowel disease.Geier, Mark Steven January 2007 (has links)
Title page, table of contents and abstract only. The complete thesis in print form is available from the University of Adelaide Library. / The primary aim of this thesis was to identify probiotics and/or prebiotics with the potential to reduce the severity of experimental colitis. The specific aims were to i) screen a range of candidate pro biotic strains for capacity to reduce symptoms of DSS-colitis, ii) characterize the effects of DSS within the small intestine, iii) assess, in vitro, the effect of probiotics on intestinal epithelial cell integrity, iv) assess the potential for the prebiotic, fructooligosaccharide, to reduce the severity of DSS-colitis alone, and in synbiotic combination with a probiotic strain. / http://proxy.library.adelaide.edu.au/login?url= http://library.adelaide.edu.au/cgi-bin/Pwebrecon.cgi?BBID=1280844 / Thesis (Ph.D.) -- University of Adelaide, School of Molecular and Biomedical Sciences, 2007
|
5 |
Probiotics and prebiotics as a therapeutic strategy for inflammatory bowel disease.Geier, Mark Steven January 2007 (has links)
Title page, table of contents and abstract only. The complete thesis in print form is available from the University of Adelaide Library. / The primary aim of this thesis was to identify probiotics and/or prebiotics with the potential to reduce the severity of experimental colitis. The specific aims were to i) screen a range of candidate pro biotic strains for capacity to reduce symptoms of DSS-colitis, ii) characterize the effects of DSS within the small intestine, iii) assess, in vitro, the effect of probiotics on intestinal epithelial cell integrity, iv) assess the potential for the prebiotic, fructooligosaccharide, to reduce the severity of DSS-colitis alone, and in synbiotic combination with a probiotic strain. / http://proxy.library.adelaide.edu.au/login?url= http://library.adelaide.edu.au/cgi-bin/Pwebrecon.cgi?BBID=1280844 / Thesis (Ph.D.) -- University of Adelaide, School of Molecular and Biomedical Sciences, 2007
|
6 |
Market and product assessment of probiotics and prebiotics and probiotic strains for commercial useBrink, Marelize 03 1900 (has links)
Thesis (MSc Nutrition Science)--Stellenbosch University, 2004. / ENGLISH ABSTRACT: Probiotics (live microbes) and prebiotics (non-digestible food-ingredients) are rapidly gaining interest
worldwide as supplements and functional food ingredients but little South African information in this
regard is available. Furthermore, the availability of South African produced probiotic concentrates for
commercial use is also very limited. The aims of this study therefore were to complete a market and
product assessment of probiotic and prebiotic containing products in South Africa and to evaluate
probiotic strains for commercial use in South Africa.
For the purposes of market and product assessment probiotic and/or prebiotic containing products
manufactured in South Africa were identified. The scientific and legal correctness of health and
content claims made on the labels of the products were assessed. An exploratory survey was
conducted to determine the awareness of South African consumers of probiotics and prebiotics. For
the evaluation of probiotic strains for potential commercial use in South Africa, a panel of twelve
lactic acid bacteria (LAB) were screened for inhibitory activity against two porcine pathogens and
indicator strains from the LMG-panel isolated from the faeces of patients diagnosed with AIDS. The
five LAB with the best inhibitory activity were tested for growth in soymilk-base and for the effect of
lyophilization on the inhibitory activity thereof. The effect of prebiotics on the growth and inhibitory
activity of the strains was tested in vitro.
A range of products containing probiotics and prebiotics available on the South African market was
identified. Irregulatories concerning health claims on the labels were found, but content claims
seemed to be less of a problem. The results also indicate that the proposed South African regulations
for the labelling of probiotic and prebiotic containing products need to be revised to include the
probiotic and prebiotic related health claims for which sufficient scientific evidence is available. The
probiotic strains with potential for commercial use in South Africa that were identified, include
Lactobacillus plantarum 423, Lactobacillus casei LHS, Lactobacillus salivarius 241, Lactobacillus
curvatus DF38 and Pediococcus pentosaceus 34. These strains were grown successfully in soymilkbase
and lyophilization did not have a negative effective on the inhibitory activity thereof. The growth
and inhibitory activity of the five LAB were promoted when combined with 1% (w/v)
Raftilose® Synergyl .
It is concluded that although a variety of probiotic and prebiotic containing products are available on
the South African market, the scientific and legislative correctness of especially health related claims
is not satisfactory and that South African consumer awareness of these products is low. It is also
concluded that a combination of at least three of the five identified LAB and 1% Raftilose® Synergy can be used by South African manufacturers for the production of probiotic and
prebiotic containing supplements. / AFRIKAANSE OPSOMMING: Die belangstelling in probiotika (lewendige mikrobe) en prebiotika (onverteerbare
voedselbestanddele) as supplemente en funksionele voedselbestanddele is besig om wêreldwyd toe te
neem, alhoewel weinig Suid-Arikaanse inligting in hierdie verband beskikbaar is. Die beskikbaarheid
van Suid-Afrikaans geproduseerde probiotika konsentrate vir kommersïele gebruik is ook baie beperk.
Die doelwitte van hierdie studie was dus om 'n mark- en produkevaluering van probiotika- en
prebiotika-bevattende produkte in Suid-Afrika uit te voer en om probiotiese stamme te evalueer vir
uiteindelike kommersiële gebruik in Suid-Afrika.
Vir die doel van die mark- en produkevaluering is probiotika- en prebiotika-bevattende produkte wat
in Suid-Afrika vervaardig word geïdentifiseer. Die wetenskaplike en wetlike korrektheid van die
gesondheids- en inhoudsaansprake op die etikette van die produkte is evalueer. 'n Markopname is
uitgevoer om die bewustheid van Suid-Afrikaanse verbruikers van probiotika en prebiotika vas te stel.
Vir die evaluering van probiotiese stamme vir potensïele kommersiële gebruik in Suid-Afrika is 'n
paneel van twaalf melksuurbakteriëe getoets vir inhibitoriese aktiwiteit teen twee patogene geïsoleer
uit varke asook teen indikator stamme van die LMG-paneel. Die vyf melksuurbakteriëe met die beste
inhibitoriese aktiwiteit is getoets vir groei in sojamelk-basis en ook vir die effek van vriesdroging op
die groei en inhibitoriese aktiwiteit van die stamme daarvan. Die effek van prebiotika op die groei en
inhibitoriese aktiwiteit van die stamme is in vitro getoets.
'n Reeks van probiotika- en prebiotika-bevattende produkte wat beskikbaar is op die Suid-Afrikaanse
mark, is geidentifiseer. Ongeruimdhede met die gesondheidsaansprake op die etikette is gevind, maar
inhoudsaansprake was minder problematies. Die resultate dui ook daarop dat die voorgestelde Suid-
Afrikaanse regulasies vir die etikettering van probiotika- en prebiotika-bevattende produkte hersien
moet word om al die probiotika- en prebiotika-verwante gesondheidsaansprake waarvoor voldoende
wetenskaplike bewyse beskikbaar is in te sluit. Die probiotiese stamme met potensiaal vir
kommersiële gebruik in Suid-Afrika sluit die volgende in: Lactobacillus plantarum 423, Lactobacillus
casei LHS, Lactobacillus salivarius 241, Lactobacillus curvatus DF 38 en Pediococcus pentosaceus
34. Hierdie stamme is suksesvol gekweek in sojamelk-basis en vriesdroging het nie' n negatiewe
effek op die groei en inhibitoriese aktiwiteit daarvan gehad me. Die kombinasie van die vyf
melksuurbakteriëe met 1% Raftilose® Synergy het die groei en inhibitoriese aktiwiteit daarvan
bevorder.
Die gevolgtrekking wat gemaak word is dat alhoewel 'n varrasie van probiotika- en prebiotikabevattende
produkte beskikbaar is op die Suid-Afrikaanse mark, die wetenskaplike en wetlike
korrektheid van spesifiek die gesondheids-verwante aansprake op die etikette daarvan nie bevredigend
is nie en dat die bewustheid van die Suid-Afrikaanse verbruikers van hierdie produkte laag is. Die gevolgtrekking kan ook gemaak word dat 'n kombinasie van ten minste drie van die vyf
geïdentifiseerde melksuurbakteriëe en 1% Raftilose® Synergy deur Suid-Afrikaanse vervaardigers
gebruik kan word vir die vervaardiging van produkte wat probiotika en prebiotika bevat.
|
7 |
Identification of probiotic microbes from South African products using PCR-based DGGE analysesTheunissen, Johnita 03 1900 (has links)
Thesis (MScFoodSc)--Stellenbosch University, 2004. / ENGLISH ABSTRACT:
The regular consumption of probiotics is becoming a recognized trend in the food
industry due to several reported health benefits. A probiotic is defined as a live
microbial feed supplement that beneficially affects the host animal by improving its
intestinal microbial balance. A wide variety of probiotic food products are available
on the South African market and comprise an assortment of fermented milks, as
well as lyophilized preparations in tablet or capsule form.
Strains of Lactobacillus acidophilus and Bifidobacterium species are mostly
used as probiotic microbes in the industry due to their health enhancing effect.
The survival of sensitive probiotic microbial species in food matrices are influenced
by various factors such as oxygen concentration, pH levels and manufacturing and
storage conditions. These should be considered and monitored as the South
African food and health regulations stipulate that probiotic microbes should be
present at a concentration of 10⁶ cfu.ml ̄ ¹' in order to exert a beneficial effect.
Some health benefits are also correlated to specific microbial species and strains
and these factors have resulted in the need for the rapid and accurate
identification of probiotic microbes present in food products.
The probiotic microbes present in probiotic yoghurts and supplements have
in the past been identified using traditional methods such as growth on selective
media, morphological, physiological and biochemical characteristics. However,
even some of the most sophisticated cultural-dependant techniques are not always
sufficient for the identification and classification of especially Bifidobacterium, as
well as closely related Lactobacillus species. Molecular techniques are more often
employed for the rapid and accurate detection, identification and characterization
of microbial species present in food products.
The aim of this study was to detect and identify the probiotic species
present in various commercial South African yoghurts and lyophilized preparations
using peR-based DGGE analysis. A 200 bp fragment of the V2-V3 region of the
16S rRNA gene was amplified and the peR fragments were resolved by DGGE.
The unique fingerprints obtained for each product were compared to two reference
markers A and B in order to identify the bands present. The results obtained were
verified by species-specific peR, as well as sequence analyses of bands that
could not be identified when compared to the reference markers.
Only 54.5% of the South African probiotic yoghurts that were tested did
contain all the microbial species as were mentioned on the labels of these
products, compared to merely one third (33.3%) of the lyophilized probiotic food
supplements. Some Bifidobacterium species were incorrectly identified according
to some product labels, while other products contained various microbes that were
not mentioned on the label. Sequence analysis confirmed the presence of a
potential pathogenic Streptococcus species in one of the yoghurt products and in
some instances the probiotic species claimed on the labels were non-scientific and
misleading.
The data obtained in this study showed that the various South African
probiotic products tested were of poor quality and did not conform to the South
African regulations. peR-based DGGE analysis proofed to be a valuable
approach for the rapid and accurate detection and identification of the microbial
species present in South African probiotic products. This could help with future
implementation of quality control procedures in order to ensure a reliable and safe
probiotic product to the consumer. / AFRIKAANSE OPSOMMING: Die gereelde inname van probiotiese produkte is besig om In erkende tendens in
die voedselindustrie te word, as gevolg van verskeie gesondheidsvoordele wat
daaraan gekoppel word. In Probiotika word gedefinieer as In voedingsaanvulling
wat uit lewendige mikrobes bestaan en wat In voordelige effek op mens of dier het
deur In optimale mikrobiese balans in die ingewande te handhaaf. In Wye
verskeidenheid probiotiese voedselprodukte is tans beskikbaar op die Suid-
Afrikaanse mark. Hierdie bestaan hoofsaaklik uit verskeie gefermenteerde
melkprodukte asook 'n reeks tablette en kapsules wat probiotiese mikrobes in
gevriesdroogde vorm bevat.
Lactobacillus acidophilus tipes en Bifidobacterium spesies word die
algemeenste in die voedselindustrie gebruik aangesien hierdie spesifieke
mikrobes bekend is om goeie gesondheid te bevorder. Die oorlewing van
sensitiewe probiotiese mikrobiese spesies in voedsel matrikse word beïnvloed
deur faktore soos suurstof konsentrasie, pH-vlakke en vervaardigings- en
opbergings kondisies. Hierdie faktore moet in aanmerking geneem word en
verkieslik gemonitor word aangesien die Suid-Afrikaanse voedsel en gesondheids
regulasies stipuleer dat probiotiese mikrobes teen In konsentrasie van 10⁶ kolonie
vormende eenhede per ml teenwoordig moet wees om In voordelige effek te toon.
Sommige gesondheidsvoordele word direk gekoppel aan spesifieke mikrobiese
spesies en spesie-tipes. Hierdie faktore het gelei tot In groot aanvraag na vinnige
en akkurate metodes vir die identifikasie van probioties mikrobes in
voedselprodukte.
Die probiotiese mikrobes teenwoordig in probiotiese joghurts en ook die
gevriesdroogde vorms in tablette en kapsules, was al geïdentifiseer deur gebruik
te maak van tradisionele metodes soos groei op selektiewe media, morfologiese,
fisiologiese en biochemiese eienskappe. Selfs van die mees gesofistikeerde
kultuur-afhanklike tegnieke is egter nie altyd voldoende vir die identifikasie en
klassifikasie van veral Bifidobacterium en na-verwante Lactobacillus spesies nie.
Molekulêre metodes word dikwels aangewend vir die vinnige en akkurate
deteksie, identifikasie en karakterisering van mikrobes teenwoordig in
voedselprodukte.
Die doel van hierdie studie was om die probiotiese mikrobes teenwoordig in
verskeie Suid-Afrikaanse joghurts en gevriesdroogde aanvullings, te identifiseer
deur gebruik te maak van polimerase kettingreaksie (PKR)-gebaseerde
denaturerende gradiënt jelelektroforese (DGGE) analise. 'n PKR fragment van
200 bp van die V2-V3 gedeelte van die 16S ribosomale RNS (rRNS) geen is
geamplifiseer, en die PKR fragmente is geskei met behulp van DGGE. Die unieke
vingerafdrukke wat verkry is vir elke produk is teen twee verwysings merkers A en
B vegelyk om die bande teenwoordig in die profiele te identifiseer. Die resultate is
bevestig deur spesies-spesifieke PKR en ook deur die ketting volgordes van die
DNS fragmente te bepaal wat nie geïdentifiseer kon word deur vergelyking met die
verwysings merkers nie.
Slegs 54.5% van die Suid-Afrikaanse probiotiese joghurts wat getoets is het
al die mikrobiese spesies bevat soos aangedui was op die etikette van hierdie
produkte, teenoor slegs 'n derde (33.3%) van die gevriesdroogde
voedingsaanvullings. Sekere Bifidobacterium spesies is verkeerd geïdentifiseer
op sommige van die produk etikette, terwyl ander produkte verskeie mikrobes
bevat het wat nie op die etiket aangedui was nie. 'n Potensiële patogeniese
Streptococcus spesie is in een van die joghurt produkte gevind soos bevestig deur
DNS kettingvolgorde bepalings. In sommige gevalle was die probiotiese
spesienaam wat aangedui is op die etiket onwetenskaplik en misleidend.
Die resultate wat uit hierdie studie verkry is dui aan dat die Suid-Afrikaanse
probiotiese produkte wat getoets is van 'n swak gehalte is en nie aan die Suid-
Afrikaanse regulasies voldoen nie. Daar is getoon dat PKR-gebaseerde DGGE
analise 'n waardevolle tegniek kan wees vir die akkurate deteksie en identifisering
van die mikrobiese spesies teenwoordig in probiotiese produkte. Dit kan help met
die toekomstige implementering van kwaliteitskontrolerings prosedures om 'n
mikrobiologiese betroubare en veilige produk aan die verbruiker te verseker.
|
Page generated in 0.4441 seconds