Spelling suggestions: "subject:"abacterial pollution off water"" "subject:"abacterial pollution oof water""
21 |
Bacterial Survey of Representative Wells of Canyon, Texas, with Special Emphasis on SanitationBarnes, Adele 05 1900 (has links)
The problem of this thesis consists of a bacterial analysis of twenty-five representative wells within a radius of thirty miles of Canyon, Texas. An attempt has been made to determine the possible presence of the typhoid organism in these wells.
|
22 |
Bacterial Survey of the Sources of Drinking Water of Trinidad, Texas, with Special Reference to SanitationColdwell, Lavenia Ruth 08 1900 (has links)
A bacterial analysis of the water from thirty-six sources of consumption by the white population of Trinidad, Henderson County, Texas, was made to determine the potability of each of these in regard to infection from typhoid or related organisms.
|
23 |
The role of nitrogen in the regulation of microcystin content in Microcystis aeruginosaDowning, T. G. 12 1900 (has links)
Thesis (PhD)--University of Stellenbosch, 2005. / ENGLISH ABSTRACT: Several genera of cyanobacteria produce a range of toxins. The increased
rate of eutrophication of surface fresh waters due to anthropogenic inputs has
resulted in more frequent and severe cyanobacterial bloom events. Such
bloom events make impoundments unsuitable for recreational use and
increase the cost of production of potable water due to the necessity for
removal of toxins released from cells during the purification process.
Microcystis aeruginosa is the major freshwater bloom-forming toxic
cyanobacterium. Concentrations of the hepatotoxin, microcystin, are highly
variable in blooms. Published literature on environmental conditions leading to
increased microcystin production was often contradictory and in many cases
did not consider all relevant parameters. However, environmental nitrogen
and phosphorus, temperature and light, and growth rate were implicated in
regulation of toxin content. The purpose of this work was therefore to
investigate environmental factors (specifically nitrogen and phosphorus) and
cellular activities (specifically carbon fixation and nitrogen uptake rates and
growth rate) involved in the modulation of microcystin production in M.
aeruginosa in order to clarify the role of these parameters, and in an attempt
to identify regulatory mechanisms for microcystin production. Environmental
nitrogen, phosphorus and growth rate were shown to co-modulate microcystin
production in M. aeruginosa. Adequate phosphorus is required for
photosynthetic carbon fixation. Phosphorus uptake by M. aeruginosa is
strongly correlated with carbon fixation rate. Although microcystin content
increased with increasing nitrogen:phosphorus ratios in culture medium,
under phosphorus limitation microcystin content was lower irrespective of
nitrogen concentrations. This observation and the requirements for fixed
carbon for nitrogen assimilation therefore prompted investigation of the effects
of cellular carbon fixation and nitrogen uptake in the modulation of microcystin
production. Microcystin production was found to be enhanced when nitrogen
uptake rate relative to carbon fixation rate was higher than that required for
balanced growth. The cellular nitrogen:carbon ratio above which microcystin
concentrations increased substantially, corresponded to the Redfield ratio for balanced growth. Investigation of potential regulatory mechanisms involving
the cyanobacterial nitrogen regulator, NtcA, yielded putative NtcA binding
sites indicative of repression in the microcystin synthetase gene cluster. In
culture, the polypeptide synthetase module gene, mcyA, and ntcA were
inversely expressed as a function of carbon-fixation:nitrogen-uptake potential.
However, no increase or decrease in microcystin production could be linked to
either glutamine, glutamate or a-ketoglutarate, metabolites that are involved in
regulation of ntcA. The role of NtcA in regulation of microcystin production
could therefore not be confirmed. In conclusion, these data suggest that
microcystin production is metabolically regulated by cellular C:N balance and
specific growth rate. The primary importance of nitrogen and carbon was
demonstrated by a simple model where only nitrogen uptake, carbon fixation
and growth rate were used to predict microcystin levels. The model also
explains results previously described in literature. Similarly, an artificial neural
network model was used to show that the carbon fixation dependence on
phosphorus allows accurate prediction of microcystin levels based on growth
rate and environmental nitrogen and phosphorus. / AFRIKAANSE OPSOMMING: Verskeie genera van sianobakterieë produseer 'n verskeidenheid van
toksiene. Die toename in die tempo van eutrofikasie van varswater
oppervlaktes as gevolg van antropogeniese insette veroorsaak al hoe meer
en al hoe erger sianobakteriële infestasies. Dit veroorsaak probleme vir
ontspanninggebruik van hierdie waters en verhoog die koste van produksie
van drinkbare water as gevolg van die noodsaak om die toksiene wat deur die
selle gedurende die suiweringsproses vrygelaat word te verwyder. Microcystis
aeruginosa is die belangrikste varswater bloeisel-vormende toksiese
sianobakterium. Die konsentrasie van die hepatotoksien mikrosistien is hoogs
varieerbaar in sulke bloeisels. Gepubliseerde literatuur oor die
omgewingskondisies wat lei na verhoogde mikrosistienproduksie is dikwels
weersprekend en neem in vele gevalle nie al die relevante parameters in ag
nie. Desnieteenstaande word omgewingstikstof, fosfor, temperatuur en lig,
asook groeisnelheid, geïmpliseer in die regulering van toksieninhoud. Die doel
van hierdie navorsing was dus om omgewingsfaktore (spesifiek stikstof en
fosfor) en sellulêre aktiwiteite (spesifiek koolstoffiskering en die snelheid van
stikstofopname en van groei) betrokke by die modulering van
mikrosistienproduksie in M. aeruginosa te ondersoek in 'n poging om die rol
van hierdie parameters te verstaan en om regulatoriese meganismes vir
mikrosistienproduksie te identifiseer. In hierdie studie is aangetoon dat
omgewingstikstof en fosfor sowel as groeisnelheid mikrosistienproduksie in M.
aeruginosa ko-moduleer. Genoegsame fosfor word benodig vir fotosintetiese
koolstoffiksering. Fosforopname deur M. aeruginosa korreleer sterk met die
snelheid van koolstoffiksering. Alhoewel mikrosistieninhoud toegeneem het
met 'n toename in die stikstof:fosfor verhouding in die kultuurmedium, was die
mikrosistieninhoud onder kondisies van fosforlimitering laer ongeag die
stikstofkonsentrasie. Hierdie waarneming, tesame met die noodsaak van
gefikseerde koolstof vir stikstofassimilering, het gelei na 'n studie van die
effekte van sellulêre koolstoffiksering and stikstofopname op die modulering
van mikrosistienproduksie. Dit is gevind dat mikrosistienproduksie verhoog
was wanneer die snelheid van stikstofopname relatief tot die snelheid van koolstoffiksering hoër was as die waarde wat benodig word vir gebalanseerde
groei. Die sellulêre stikstof:koolstof verhouding waarbo
mikrosistienkonsentrasies beduidend verhoog is stem ooreen met die
Redfield verhouding vir gebalanseerde groei. 'n Ondersoek na potensiële
reguleringsmeganismes waarby die sianobakteriële stikstofreguleerder NtcA
betrokke is het gelei na die ontdekking van moontlike NtcA bindingseteis; dit
kan dui op die repressie van die mikrosistiensintetase geengroepering. Onder
kultuurkondisies is gevind dat die geen vir die polipeptiedsintetase module,
mcyA, en ntcA omgekeerd uitgedruk word as 'n funksie van
koolstofopname:stikstofopname potensiale. Geen toename of afname in
mikrosistienproduksie kon egter gekoppel word aan óf glutamien, óf
glutamaat, óf a-ketoglutaraat nie, metaboliete wat betrokke is by die
regulering van ntcA. Die rol van NtcA in die regulering van
mikrosistienproduksie kon dus nie bevestig word nie. Die gevolgtrekking is
dus gemaak dat mikrosistienproduksie metabolies gereguleer word deur die
C:N balans en die spesifieke groeisnelheid. Die primêre belang van stikstof en
koolstof is gedemonstreer deur 'n eenvoudige model waarin slegs
stikstofopname, koolstoffiksering en groeisnelheid gebruik word om
mikrosistienvlakke te voorspel. Die model verklaar ook resultate wat tevore in
die literatuur beskryf is. Soortgelyk is 'n artifisiële neurale netwerkmodel
gebruik om te toon dat die afhanklikheid van koolstoffiksering van fosfor
akkurate voorspelling van mikrosistienvlakke gebaseer of groeisnelheid en
omgewingstikstof en fosfor moontlik maak.
|
24 |
Fecal Bacteroidetes host distributions and environmental source trackingDick, Linda K. 16 November 2004 (has links)
Contamination of recreational and shellfish waters with fecal pollution is a
major water quality issue with associated economic impacts and human health risks.
Reliable fecal source identification and rapid, quantitative analyses are essential
components of risk assessment. Enteric bacteria that are endemic to specific hosts
have a potential role as public health indicators of fecal pollution. Building on
previous work to discriminate ruminant and human fecal contamination, we cloned
class Bacteroidetes 16S rRNA genes from pig, elk, dog, cat, and seagull fecal DNAs.
Unique restriction patterns were identified among clones from each of the host species
using Terminal Restriction Fragment Length Polymorphisms (T-RFLP). Clones
exhibiting unique patterns were sequenced and analyzed phylogenetically, along with
human, horse, and cattle sequences recovered from previous work. The analysis
revealed both endemic and cosmopolitan (global) host distributions. The sequence
data were used to identify host-specific genetic markers for pig and horse feces, and
to design PCR primers that identify these sources of fecal pollution in water. There
was a high degree of sequence overlap among the fecal Bacteroidetes of wild and
domestic ruminants, and among human, domestic pet, and seagull Bacteroidetes. We
compared fecal Bacteroidetes rRNA genes from these hosts using subtractive
hybridization, a method that identifies differences between closely related genomes or
gene sequences. A Bacteroidetes rDNA marker that distinguishes elk and cow feces
was identified, as well as a host-specific marker for dog fecal Bacteroidetes. The four
newly designed PCR primers were tested for specificity and sensitivity, and the dog
primer was successfully used, along with the human and ruminant-specific primers, in
a collaborative study comparing fecal source tracking methods. We also developed a
real time Taq nuclease assay for quantification of fecal Bacteroidetes 16S rDNA, and
compared it with an EPA-approved enumeration method for the current standard
public health indicator, Escherichia coli, in serial dilutions of sewage primary influent.
There was a strong, positive correlation between the methods, and the Taq nuclease
assay was sensitive and much more rapid than the E. coli assay. PCR source
identification and enumeration of fecal Bacteroidetes 16S rDNA show promise for
application in a health risk-based analysis of fecal pollution. / Graduation date: 2005
|
25 |
Migration of E. coli and solutes to tile drains via preferential and matrix flowMoreno, Daniel 21 March 2002 (has links)
The extent of agricultural drainage has created concern for its potential undesirable
effects on surface water quality. Land applications of liquid manure on tile drain
fields have the potential to transport solutes and bacteria to the drains following
precipitation or irrigation events and many times are directly sent to a surface water
body, and have been documented as a source of contamination of surface waters.
This study determined the potential for and magnitude of E. coli and solute
migration to tile drains through the soil profile. Water from subsurface drains was
analyzed for chemical and bacterial composition following tracer applications.
Two sites were selected for the study to determine transport at large (field) and
small (plot) scales. At the large-scale site, both tracers, bacteria (E. coli and Total
Coliform) and Amino-G (a conservative tracer), were used to monitor the speed of
transport from the surface to the tile drain following liquid manure applications,
tracer applications and additionally precipitation events. The concentrations of E.
coli were monitored every hour for 76 days during the spring. Both tracers,
bacteria and Amino-G, were detected in the tile drainage shortly after precipitation
events. The peak concentration of E. coli was observed to be 1.2 x 10⁶
CFU/l00mL. These elevated concentrations of E. coli might be attributed to the
characteristics of the soil, high organic matter and well-structured clay soils. Both
the rapid breakthrough of tracer to the tile drain and the peaks of tile water
temperature during precipitation events provided evidence of macropore flow.
Antecedent soil moisture and warmer temperatures appeared to provide ideal
conditions for bacteria growth.
The small-scale study site was selected for a more focused study. The purpose of
this site was to quantify more accurately the percent mass of surface applied tracer
that was transported to the tile drain, allowing mass balance calculations.
Experiments were conducted during the summer to control the rate and total
amount of irrigation. Amino-G readings were taken every 10 seconds for 125
hours of continuous irrigation. Tracer applications were conducted at runoff and
non-runoff conditions. Both types of tracer applications had Amino-G
breakthrough in less than 10 minutes after initiation of irrigation. Tracer applied at
runoff rates resulted in 4 to 17 times more total tracer mass migrating to the tile
drain than when applied at non-runoff rates. The total mass of Amino-G migrating
to the tile drain during non-runoff conditions depended on the total volume of
applied tracer, regardless of the tracer concentration. For an application of 5.6 mm
at 12 mg/L, 5.7% of the total applied tracer migrated to the tile drain, whereas for
an application of 1.9 mm at 27.7 mg/L only 2.8% of the total applied tracer
migrated to the tile drain. Tile flow response to irrigation experiments appeared to
be governed by soil moisture. Lysimeter samples were taken continuously every 4-8 hours until the 94th hour after tracer application. Tile water concentrations were
consistently greater than concentrations found in the deeper suction lysimeters at
corresponding times, providing further evidence of preferential flow. E. coli
transported through the soil and into the drains were demonstrated to be event-driven
by precipitation events and irrigation events. In addition, the characteristics
of this type of soil - the high clay content, the well-defined structure, the high level
of organic matter and rich biological activity has been known to enhance the
preferential pathways and transport processes in the soil profile, resulting in rapid
transport of surface applied solutes and effluents to tile drains. / Graduation date: 2003
|
26 |
Bacterial loadings watershed model in Copano BayGibson, Carrie Jo 23 October 2012 (has links)
Copano Bay currently exceeds fecal coliform Texas Surface Water Quality Standards for oyster water use. Aransas and Mission River Tidals currently exceed enterococci water quality standards for contact recreation use. The fecal coliform Copano Bay Bacterial Loadings Model will be used to support the TCEQ Total Maximum Daily Load (TMDL) program to develop the TMDLs for the three impaired water segments. The objectives of this research are to identify the major bacterial sources in the Copano Bay watershed, to calculate the total bacterial loadings (i.e., the TMDLs) from these sources, and to estimate the load reductions needed to bring each of the impaired segments into compliance with water quality standards. The potential bacterial sources that were considered in the model were wastewater treatment plants (WWTPs), waterbirds, livestock, failing septic systems, and other non-point sources that originate from different types of land uses (e.g., urban, forest, etc.). This thesis presents an analysis of the existing bacterial monitoring dataset for fecal coliform, including spatial and statistical analysis of the bacterial monitoring data, an estimation of fecal coliform loadings (the input into the models), including non-point and point source calculations, and a description of bacterial transport of fecal coliform from the sources in the watersheds, rivers, and Copano Bay using the model, including explanations for how the model parameters were determined. The main assumptions used in the model were that the fecal coliform bacteria decay (first-order reaction rate) in watersheds and along streams and channels, and Copano Bay is divided up into four Continuous Flow, Stirred Tank Reactors (CFSTRs). The results of the research include the modeled median fecal coliform concentrations throughout the watershed, the impact of different bacterial sources on each of the water segments in Copano Bay watershed, and the load reductions needed (and from what sources) to meet fecal coliform water quality standards. Cattle were determined (based on model results) to be the largest fecal coliform contributor of fecal coliform in Copano Bay. / text
|
27 |
Assessment of Escherichia coli in three subwatersheds of the upper White River, INBarnard, Amity R. January 2004 (has links)
According to the U.S. Environmental Protection Agency, 174 of Indiana's 428 waterbodies were listed as impaired for Escherichia coli (E. coli) in 2002. This study determined the severity of E. coli contamination and assessed the impacts of landuse on E. coli concentrations in three subwatersheds. Samples were collected and E. coli analyzed using the Coliscan Easygel method. Geographic information system analyses were used to determine impacts of spatial parameters on E. coli concentrations. Sixty-seven percent of the 162 samples exceeded the USEPA recreational water quality standard. Escherichia coli concentrations were significantly related to the ratio of five-and thirty-meter impervious surface buffer, density of septic systems, and the presence of inadequately drained soils. Confined feeding operations and combined sewer overflows also resulted in elevated E. coli concentrations. Human activity in urban areas had substantial impacts on these concentrations, impacts that can be minimized through proper management. / Department of Natural Resources and Environmental Management
|
28 |
Development of an antecedent precipitation index model to detect seasonal changes in fecal coliform levels during storm events /Bidaurreta, Jennifer L. January 1900 (has links)
Thesis (M.S.)--Humboldt State University, 2007. / Includes bibliographical references (leaves 24-25). Also available via Humboldt Digital Scholar.
|
29 |
A study of tetracycline resistant Escherichia coli in impala (Aepyceros melampus) and their water sourcesMariano, Valeria. January 2008 (has links)
Thesis (MSc (Paraclinical Sciences, Veterinary Science))--University of Pretoria, 2007. / Includes bibliographical references. Also available in print format.
|
30 |
Correlations between a cyanobacteria bloom's decline and environmental dynamicsO'Rorke, Richard. January 2009 (has links)
Thesis (M.Sc. Biology)--University of Waikato, 2009. / Title from PDF cover (viewed Apr. 22, 2010). Includes bibliographical references (p. 35-47, 104-120)
|
Page generated in 0.8138 seconds