• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Bacillus subtilis endospore coat protein solubilization methods for studying effects of high pressure precessing

Gandhi, Kalpesh K. 08 November 2002 (has links)
Spores of foodborne pathogens such as Clostridium botulinum, Clostridium perfringens and Bacillus cereus are widely distributed in nature. Presence of those spores in food products, particularly C. botulinum spores in vacuum packed, ready-to-eat low-acid products, is a great safety concern. The research here described is a first effort towards understanding the role of the spore coat proteins in the inactivation of bacterial spore using high pressure processing. This study proposes a coat protein solubilization methodology using non-ionic detergents minimizing protein damage and compatible with spectroscopy methods. The methodology developed here was compared with approaches proposed in the literature with respect to protein yield, protein fractions identified, amino acid composition and suitability with spectroscopy techniques for the further analysis of coat proteins. Bacillus subtilis ATCC 6633 spore coat proteins were solubilized (n=3) using octyl-β-D-glucopyranoside (OGP) at room temperature and urea/sodium dodecyl sulphate (UDS) at 37C and 70C. Analysis of variance (ANOVA) showed no significant (95% confidence) differences between the three repetitions of the three spore coat protein solubilization methods. Protein yield was significantly larger (95% confidence) when using UDS at 70C as compared to UDS at 37C. OGP gave the lowest protein yield but allowed circular dichroism (CD) analysis of the spore coat protein solution with minimum blank signal. SDS-PAGE revealed that the UDS-70C coat protein solutions consisted of five major and six minor proteins ranging 6 to 65 kD while the OGP solution appear to consist of four major and nine minor bands in the same mw range. Amino acid analysis of the protein extracted by the OGP method was conducted using reverse phase HPLC (RP-HPLC) and compared with published information. The OGP spore coat protein solution showed a higher proportion of aspartate, glutamate, alanine and tyrosine. Pressure, heat and time effects were studied on spore coat proteins obtained from untreated and pressure-treated B. subtilis ATCC 6633 spores. Pressure treatments of spores, and of extracted spore coat protein solutions, at 50 kpsi (345 mPa) and 85 kpsi (586 mPa) for 10 and 30 min at constant 85C along with appropriate heat- and pressure-only controls and untreated sample, were used to study the effect of pressure, heat and time on spore coat proteins. Both spore coat protein solubilization procedures showed a significant reduction in protein yield for pressure-only, heat-only and pressure/heat treated spores when compared with untreated spores. When OGP-solubilized proteins from untreated spores were pressure treated, SDS-PAGE profile showed an increasing overall band intensity with increasing pressure and time. In the case of protein solution obtained from pressure-treated spores the electrophoretic pattern showed the loss of higher molecular weight proteins. The significance of this study is that for the first time we have observed extensive changes on spore coat proteins caused by pressure, as well as heat treatments. Future studies will examine what is the probable physiological role of the proteins damaged by these physical treatments. An advantage of the protein solubilization here developed will allow the application of spectroscopy techniques to characterize changes in spore coat proteins. / Graduation date: 2003

Page generated in 0.117 seconds