• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 5
  • 1
  • 1
  • Tagged with
  • 7
  • 7
  • 4
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Cake filtration modeling : Analytical cake filtration model and filter medium characterization

Koch, Michael January 2008 (has links)
<p>Cake filtration is a unit operation to separate solids from fluids in industrial processes. The build up of a filter cake is usually accompanied with a decrease in overall permeability over the filter leading to an increased pressure drop over the filter. For an incompressible filter cake that builds up on a homogeneous filter cloth, a linear pressure drop profile over time is expected for a constant fluid volume flow. However, experiments show curved pressure drop profiles, which are also attributed to inhomogeneities of the filter (filter medium and/or residual filter cake).</p><p>In this work, a mathematical filter model is developed to describe the relationship between time and overall permeability. The model considers a filter with an inhomogeneous permeability and accounts for fluid mechanics by a one-dimensional formulation of Darcy's law and for the cake build up by solid continuity. The model can be solved analytically in the time domain. The analytic solution allows for the unambiguous inversion of the model to determine the inhomogeneous permeability from the time resolved overall permeability, e.g. pressure drop measurements. An error estimation of the method is provided by rewriting the model as convolution transformation.</p><p>This method is applied to simulated and experimental pressure drop data of gas filters with textile filter cloths and various situations with non-uniform flow situations in practical problems are explored. A routine is developed to generate characteristic filter cycles from semi-continuous filter plant operation. The model is modified to investigate the impact of non-uniform dust concentrations.</p>
2

Cake filtration modeling : Analytical cake filtration model and filter medium characterization

Koch, Michael January 2008 (has links)
Cake filtration is a unit operation to separate solids from fluids in industrial processes. The build up of a filter cake is usually accompanied with a decrease in overall permeability over the filter leading to an increased pressure drop over the filter. For an incompressible filter cake that builds up on a homogeneous filter cloth, a linear pressure drop profile over time is expected for a constant fluid volume flow. However, experiments show curved pressure drop profiles, which are also attributed to inhomogeneities of the filter (filter medium and/or residual filter cake). In this work, a mathematical filter model is developed to describe the relationship between time and overall permeability. The model considers a filter with an inhomogeneous permeability and accounts for fluid mechanics by a one-dimensional formulation of Darcy's law and for the cake build up by solid continuity. The model can be solved analytically in the time domain. The analytic solution allows for the unambiguous inversion of the model to determine the inhomogeneous permeability from the time resolved overall permeability, e.g. pressure drop measurements. An error estimation of the method is provided by rewriting the model as convolution transformation. This method is applied to simulated and experimental pressure drop data of gas filters with textile filter cloths and various situations with non-uniform flow situations in practical problems are explored. A routine is developed to generate characteristic filter cycles from semi-continuous filter plant operation. The model is modified to investigate the impact of non-uniform dust concentrations.
3

Aqueous solubility speciation of Cr(VI) in ferrochrome bag filter dust / Willem Petrus Johannes van Dalen

Van Dalen, Willem Petrus Johannes January 2015 (has links)
The production of ferrochrome (FeCr) from chromite ore is a reducing process, whereby the Cr(III) and Fe(II) in the ore are reduced to metallic chromium (Cr) and iron (Fe) in the final product. FeCr is mostly used for the production of stainless steel, which is a vital alloy in modern society. It is, however, impossible to exclude oxygen completely from all the high temperature steps during the production process and very small amounts of Cr(VI) are therefore formed, although not intended. The formed Cr(VI) is mostly associated with the off-gas of the high temperature processes, which are cleaned before it is released into the atmosphere by means of venturi scrubbers or bag filter systems. Certain Cr(VI) species are regarded as carcinogenic, with specifically airborne exposure to these Cr(VI) species being associated with cancer of the respiratory system. FeCr smelter facilities generate three main types of waste materials, i.e. slag, venturi sludge and bag filter dust (BFD). Most of the Cr in the waste materials consists mostly of Cr(III). However, BFD generated during the cleaning of the off-gas of open/semi-closed furnaces, could contain more significant levels of Cr(VI) than the slag and sludge. The aim of this study was to determine the solubility of different Cr(VI) species present in BFDs. This would allow that the Cr(VI) in BFD is categorised as water soluble Cr(VI), sparingly soluble and insoluble Cr(VI). These solubility categories can then be related to groups of Cr(VI) compounds, therefore taking the first step in better characterisation of Cr(VI) present in BFD. Four different BFD samples from FeCr producers in South Africa were characterised in detail. Analytical methods such as scanning electron microscope (SEM), SEM with energy-dispersive X-ray spectroscopy (SEM-EDS), particle size analysis, trace metal analysis with inductively coupled plasma with a mass spectrometer detector (ICP-MS) and Cr(VI) analysis with ion chromatography (IC) were utilised in order to characterise and categorise the samples. The results indicated that more Cr(VI) leached with an increase in pH. This was in contrast with the trend for most heavy metals. This was also an indication that not only soluble, but also sparingly- and insoluble Cr(VI) compounds occur in the BFD samples evaluated. Further analysis showed that approximately one third of the Cr(VI) species was insoluble and the remainder consisted of sparingly insoluble and soluble Cr(VI) compounds. The most significant finding was that the current leaching procedures applied by FeCr producers, prior to the chemical reduction of Cr(VI), do not effectively extract the sparingly water insoluble compounds. This results in Cr(VI) leaching from waste facilities at later stages, even if seemingly effective Cr(VI) treatment was applied. Therefore, it should be considered as an extremely important future perspective to develop economically feasible Cr(VI) extraction procedures that will ensure complete extraction of sparing water soluble Cr(VI) compounds together with the water soluble fraction, prior to chemical reduction of Cr(VI) and subsequent storage of the residue on a waste facility. / MSc (Chemistry), North-West University, Potchefstroom Campus, 2015
4

Aqueous solubility speciation of Cr(VI) in ferrochrome bag filter dust / Willem Petrus Johannes van Dalen

Van Dalen, Willem Petrus Johannes January 2015 (has links)
The production of ferrochrome (FeCr) from chromite ore is a reducing process, whereby the Cr(III) and Fe(II) in the ore are reduced to metallic chromium (Cr) and iron (Fe) in the final product. FeCr is mostly used for the production of stainless steel, which is a vital alloy in modern society. It is, however, impossible to exclude oxygen completely from all the high temperature steps during the production process and very small amounts of Cr(VI) are therefore formed, although not intended. The formed Cr(VI) is mostly associated with the off-gas of the high temperature processes, which are cleaned before it is released into the atmosphere by means of venturi scrubbers or bag filter systems. Certain Cr(VI) species are regarded as carcinogenic, with specifically airborne exposure to these Cr(VI) species being associated with cancer of the respiratory system. FeCr smelter facilities generate three main types of waste materials, i.e. slag, venturi sludge and bag filter dust (BFD). Most of the Cr in the waste materials consists mostly of Cr(III). However, BFD generated during the cleaning of the off-gas of open/semi-closed furnaces, could contain more significant levels of Cr(VI) than the slag and sludge. The aim of this study was to determine the solubility of different Cr(VI) species present in BFDs. This would allow that the Cr(VI) in BFD is categorised as water soluble Cr(VI), sparingly soluble and insoluble Cr(VI). These solubility categories can then be related to groups of Cr(VI) compounds, therefore taking the first step in better characterisation of Cr(VI) present in BFD. Four different BFD samples from FeCr producers in South Africa were characterised in detail. Analytical methods such as scanning electron microscope (SEM), SEM with energy-dispersive X-ray spectroscopy (SEM-EDS), particle size analysis, trace metal analysis with inductively coupled plasma with a mass spectrometer detector (ICP-MS) and Cr(VI) analysis with ion chromatography (IC) were utilised in order to characterise and categorise the samples. The results indicated that more Cr(VI) leached with an increase in pH. This was in contrast with the trend for most heavy metals. This was also an indication that not only soluble, but also sparingly- and insoluble Cr(VI) compounds occur in the BFD samples evaluated. Further analysis showed that approximately one third of the Cr(VI) species was insoluble and the remainder consisted of sparingly insoluble and soluble Cr(VI) compounds. The most significant finding was that the current leaching procedures applied by FeCr producers, prior to the chemical reduction of Cr(VI), do not effectively extract the sparingly water insoluble compounds. This results in Cr(VI) leaching from waste facilities at later stages, even if seemingly effective Cr(VI) treatment was applied. Therefore, it should be considered as an extremely important future perspective to develop economically feasible Cr(VI) extraction procedures that will ensure complete extraction of sparing water soluble Cr(VI) compounds together with the water soluble fraction, prior to chemical reduction of Cr(VI) and subsequent storage of the residue on a waste facility. / MSc (Chemistry), North-West University, Potchefstroom Campus, 2015
5

Estudo do efeito eletrostático na filtração de partículas de cimento em filtros de mangas

Oliveira, Flávia Matias 30 April 2015 (has links)
Submitted by Izabel Franco (izabel-franco@ufscar.br) on 2016-09-30T17:56:23Z No. of bitstreams: 1 DissFMO.pdf: 2016401 bytes, checksum: 6866947ec8d256db2aefd27468b572ce (MD5) / Approved for entry into archive by Marina Freitas (marinapf@ufscar.br) on 2016-10-04T17:30:18Z (GMT) No. of bitstreams: 1 DissFMO.pdf: 2016401 bytes, checksum: 6866947ec8d256db2aefd27468b572ce (MD5) / Approved for entry into archive by Marina Freitas (marinapf@ufscar.br) on 2016-10-04T17:30:30Z (GMT) No. of bitstreams: 1 DissFMO.pdf: 2016401 bytes, checksum: 6866947ec8d256db2aefd27468b572ce (MD5) / Made available in DSpace on 2016-10-04T17:30:37Z (GMT). No. of bitstreams: 1 DissFMO.pdf: 2016401 bytes, checksum: 6866947ec8d256db2aefd27468b572ce (MD5) Previous issue date: 2015-04-30 / Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) / Nowadays the control of industrial pollution is essential. Through filtering, you can remove the suspended solids in gases. It has been need for more efficient methods for gas filtration in order to reduce waste generation and decrease energy consumption. In this study was proposed to investigate the behavior of the particulate matter, cement and the influence of particle size in formation of gas dust cake, with and without eletrostatic charged. The filter in order to determine aspects were analyzed and compare their characteristics after filtration, defining which one operationally more suitable for this process. In this investigation the study aims optimize the filtration operation. In order to obtain a greater retention of particulates. In this sense, fabric filter were analyzed, glass and polypropylene filter, while gas filtration. Cement was used as particulate material with grain sizes 8, 14 and 20μm, the corona chargering was added in the filtration of gas during the formation of dust cake. The tests were conduction in an attempt to understand this effect the electrostatic charge, improve and increase the service life of the filter media. Was necessary to adapt it to the equipment one system gas filtration, localized in Department of Chemical Engineering (DEQ) of Federal University of São Carlos (UFSCar), for receive the corona charged. The experiment was conducted from voltage of 0 to -2 kV test with a filtration rate of 10 cm/s, and the mass flow of 9 mg/s. With the tests done, it possible show that, with the application the corona chargering the dust cake changes. It can be that the particle size directly affects the filtration efficiency and the load, can increase the efficiency the collect to particulate and decrease pressure drop during filtration of gases. / Atualmente o controle da poluição industrial é essencial. Através da filtração, é possível remover os sólidos suspensos nos gases. Tem-se então a necessidade de métodos eficientes para filtração de gases a fim de reduzir a geração de resíduos e diminuir o consumo de energia. O presente estudo objetivou investigar o comportamento do material particulado, cimento e a influência do seu tamanho de partícula na formação da torta de filtração de gases, com e sem carregamento eletrostático. Foram analisados os aspectos do filtro com intuito de determinar e comparar suas características após as filtrações, definindo qual delas será mais adequada operacionalmente para este processo. Além destas investigações o estudo busca otimizar a operação de filtração. Para que se possa obter uma maior retenção de particulados. Neste sentido, foram analisados filtros de tecidos, de fibra de vidro e polipropileno, durante a filtração de gases. Utilizou-se o cimento como material particulado, com granulometrias de 8, 14 e 20μm, o carregamento corona foi adicionado na filtração durante a formação da torta de filtração. Os testes foram realizados na tentativa de compreender esses efeitos causados a partir de cargas eletrostáticas, objetivando melhorar e aumentar o tempo de vida útil dos meios filtrantes. Para isso adaptou-se um sistema de filtração de gases, existente no Departamento de Engenharia Química (DEQ) da Universidade Federal de São Carlos (UFSCar), para receber um carregador corona. Posteriormente determinou-se o ponto ótimo de operação a uma vazão mássica de 9 mg/s e velocidade de filtração de 10 cm/s, variando-se a tensão da unidade entre 0, e -2,0 kV. Através dos ensaios realizados foi possível observar que, com a aplicação da corrente corona, ocorreu uma alteração na formação da torta de filtração. Pode-se dizer que o tamanho da partícula afeta diretamente a eficiência da filtração e que a carga, pode aumentar a eficiência de coleta das partículas e diminuir a perda de carga durante a filtração de gases.
6

Evaluation of Membrane Treatment Technology to Optimize and Reduce Hypersalinity Content of Produced Brine for Reuse in Unconventional Gas Wells

Eboagwu, Uche 2011 August 1900 (has links)
Over 18 billion barrels of waste fluids are generated annually from oil and gas production in the United States. As a large amount of water is used for oilfield operations, treating and reusing produced water can cut the consumption of fresh water in well sites. This research has helped to develop a membrane process train for a mobile produced water treatment unit for treating oilfield produced brine for reuse. To design the process train, over 30 sets of combination tests at pilot laboratory scale were performed using pretreatment, microfiltration and nanofiltration processes. Membrane performance was selected based on high flux separation efficiency, high tolerance for solids and fluid treatments. Over 95 % solids rejection and greater than 80 % oil removal efficiency were obtained in all these tests. Process train (pre-treatment and membrane) performance was monitored by chemical analysis of permeate and models fitting experimental data for the process. From the results, hydrocarbon rejection was analyzed; total organic carbon rejection was 47.9 %, total carbon content averaged 37.3 % rejection and total inorganic carbon rejection was at 3.66 %. BTEX removal efficiency ranged from 0.98 % to 52.7 % with the progressive pretreatment methods of using cartridge filters. The nanofiltration membrane showed significant reduction in total dissolved solids and in both anionic and cationic species. The process train is seen to follow a sequence of treatment from cartridge and oil removal filter treatment to microfiltration treatment to ultrafiltration, followed by nanofiltration for the purpose of this research. Further research still needs to be done on to determine the kind of analytical test which will give real time feedback on effectiveness of filters. In summary, the process train developed by TAMU-GPRI possesses distinct advantages in treating oilfield produced brine using membrane technology. These advantages include high quality of permeate, reduced sludge and the possibility of total recycle water systems. The small space requirement, moderate capital costs and ease of operation associated with the use of the mobile unit membrane technology also makes it a very competitive alternative to conventional technologies.
7

Performance of pulse-jet bag filter regarding particle removal for nano-waste incineration conditions / Performances d’un filtre à manche pour la capture de particules en conditions représentatives de l’incinération de nano-déchets

Boudhan, Rachid 05 July 2017 (has links)
Les performances de filtration d’un filtre à manche vis-à-vis de particules submicroniques et nanométriques ont été évaluées à l’échelle du laboratoire durant plusieurs cycles de colmatage/décolmatage. La distribution granulométrique des particules (aérosol de combustion) était représentative de celle rencontrée en incinération de nano-déchets en sortie de chambre de combustion à l’échelle du laboratoire. Le filtre à manche opérait en conditions réalistes, représentatives de celles rencontrées dans les lignes de traitement des fumées d’incinération de déchets en termes de température, humidité, vitesse de filtration, présence de réactifs et conditions de décolmatage. Le flux d’air et le filtre à manche étaient chauffés à 150°C, la teneur en eau était de 10-12% (soit 3% d’humidité relative HR), et la vitesse de filtration était fixée à 1,9 cm.s⁻¹. Un mélange de particules de taille submicronique de charbon actif et de bicarbonate de sodium, utilisées dans les lignes de traitement des fumées d’incinération pour l’abattement des dioxines/furanes et des gaz acides, était généré simultanément avec l’aérosol de combustion. L’étude s’est centrée sur les performances de filtration au début de la durée de vie du filtre à manche, avant stabilisation de la perte de charge résiduelle du filtre résultant des précédents cycles de filtration. La perte de charge maximale du filtre était fixée à 150 Pa pour tous les cycles de filtration avant décolmatage par rétro-soufflage à air comprimé. Les performances du filtre à manche ont été évaluées en termes d’évolution de sa perte de charge et de son efficacité de collecte (totale et fractionnelle) au cours des cycles de colmatage/décolmatage. De plus, des études expérimentales et théoriques ont été menées afin d’étudier l’influence de divers paramètres sur les performances de filtration du filtre en configuration manche ou plane, tels que l’humidité de l’air (3% HR versus 0% HR à 150°C), la température (150°C versus 24°C), la vitesse de filtration (1,9 cm.s⁻¹ versus 1,4 cm.s⁻¹) et l’influence de l’injection de réactifs. Les principaux résultats de cette étude sont : (i) importante efficacité de capture des particules du filtre à manche en conditions représentatives des lignes de traitement des fumées d’incinération : efficacité minimale de collecte de 98,5% mesurée pour des particules de taille 74 ± 15 nm (diamètre de mobilité électrique), (ii) influence du gâteau résiduel de particules au début de chaque cycle de filtration sur les performances de traitement, (iii) influence significative de l’humidité de l’air sur la structure du gâteau de particules probablement due à l’augmentation des forces d’adhésion entre les particules en présence d’humidité (150°C – 3% HR soit environ 100 g d’eau par kg d’air sec) ; augmentation plus rapide de la perte de charge du filtre à manche en présence d’humidité (150°C – 3% HR) qu’en conditions d’air sec (150°C – 0% HR). / Filtration performance of a pulse-jet bag filter was evaluated at the laboratory-scale regarding submicronic particles with a nanosized fraction during clogging/unclogging cycles. The particle size distribution was representative to those encountered at the outlet of a nano-waste incineration device at laboratory-scale. The bag filter was operated in conditions as similar as possible to those found in flue gas treatment of waste incineration plants, in terms of temperature, humidity, filtration velocity, injection of sorbent reagents and unclogging conditions. The air flow and the bag filter were heated to 150°C, the water content was maintained in the air flow in the range of 10-12% (3% of relative humidity RH), and filtration velocity throughout the bag filter was fixed at 1.9 cm.s⁻¹. A mixture of submicronic suspended particles of activated carbon and sodium bicarbonate, both used in flue gas treatment systems mainly for the removal of dioxins/furans and acid gases, was generated simultaneously with the aerosol representative of combustion emissions.The study focused on the filtration performance at the beginning of the bag filter’s lifetime filter for the 11 first clogging-unclogging cycles before stabilizing the residual pressure drop reached after pulse-jet unclogging. The maximum pressure drop was set at 150 Pa for all filtration cycles. Once the maximum pressure drop was reached, the filter was unclogged using the pulse-jet system. The performance of the bag filter was evaluated in terms of the evolution of pressure drop, fractional and total particle collection efficiencies, during the clogging/unclogging cycles.Moreover, an experimental and theoretical study was carried out on the influence of different parameters on the filtration performance of bag filter and flat filter, such as influence of humidity (3% RH versus 0% RH at 150°C), temperature (150°C versus 24°C), filtration velocity (1.9 cm.s⁻¹ versus 1.4 cm.s⁻¹) and the influence of the injection of sorbent reagents.The main results of this study are: (i) high collection efficiency of the bag filter in representative conditions of flue gas treatment of waste incineration: minimun particle collection efficiency of 98.5% for particle diameter of 74 ± 15 nm (electrical mobility diameter), (ii) influence of residual particle cake at the beginning of the filtration cycles on the bag filter performance, (iii) significant influence of humidity on the porosity of the particle cake due to the capillary condensation of water between the particles in presence of humidity (150°C - 3% RH i.e. almost 100 g of water per kg of dry air). Faster increase of bag filter pressure drop in presence of humidiy (150°C - 3% RH) as compared to the dry conditions (150°C - 0% RH).

Page generated in 0.0661 seconds