Spelling suggestions: "subject:"gag off work"" "subject:"gag oof work""
1 |
Localization using natural landmarks off-field for robot soccerHe, Yuchen 28 April 2014 (has links)
Localization is an important problem that must be resolved in order for a robot to make an estimation of its location based on observation and odometry updates. Relying on artificial landmarks such as the lines, circles, and goalposts in the robot soccer domain, current robot localization requires prior knowledge and suffers from uncertainty problems due to partial observation, and thus is less generalizable compared to human beings, who refer to their surroundings for complimentary information. To improve the certainty of the localization model, we propose a framework that recognizes orientation by actively using natural landmarks from the off-field surroundings, extracting these visual features from raw images. Our approach involves identifying visual features and natural landmarks, training with localization information to understand the surroundings, and prediction based on matching of features. This approach can increase the precision of robot orientation and improve localization accuracy by eliminating uncertain hypotheses, and in addition, it is also a general approach that can be extended and applied to other localization problems as well. / text
|
2 |
Koncepty strojového učení pro kategorizaci objektů v obrazu / Machine Learning Concepts for Categorization of Objects in ImagesHubený, Marek January 2017 (has links)
This work is focused on objects and scenes recognition using machine learning and computer vision tools. Before the solution of this problem has been studied basic phases of the machine learning concept and statistical models with accent on their division into discriminative and generative method. Further, the Bag-of-words method and its modification have been investigated and described. In the practical part of this work, the implementation of the Bag-of-words method with the SVM classifier was created in the Matlab environment and the model was tested on various sets of publicly available images.
|
Page generated in 0.0905 seconds